Metamath Proof Explorer


Theorem elrnmpt

Description: The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Hypothesis rnmpt.1 F=xAB
Assertion elrnmpt CVCranFxAC=B

Proof

Step Hyp Ref Expression
1 rnmpt.1 F=xAB
2 eqeq1 y=Cy=BC=B
3 2 rexbidv y=CxAy=BxAC=B
4 1 rnmpt ranF=y|xAy=B
5 3 4 elab2g CVCranFxAC=B