Metamath Proof Explorer


Theorem tsrps

Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion tsrps RTosetRelRPosetRel

Proof

Step Hyp Ref Expression
1 eqid domR=domR
2 1 istsr RTosetRelRPosetReldomR×domRRR-1
3 2 simplbi RTosetRelRPosetRel