Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsrps | ⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | istsr | ⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) |