Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tsrps | |- ( R e. TosetRel -> R e. PosetRel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- dom R = dom R |
|
2 | 1 | istsr | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
3 | 2 | simplbi | |- ( R e. TosetRel -> R e. PosetRel ) |