Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsrps | |- ( R e. TosetRel -> R e. PosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- dom R = dom R |
|
| 2 | 1 | istsr | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
| 3 | 2 | simplbi | |- ( R e. TosetRel -> R e. PosetRel ) |