Metamath Proof Explorer


Theorem cnvtsr

Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion cnvtsr ( 𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )

Proof

Step Hyp Ref Expression
1 tsrps ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel )
2 cnvps ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel )
3 1 2 syl ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel )
4 eqid dom 𝑅 = dom 𝑅
5 4 istsr ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 𝑅 ) ) )
6 5 simprbi ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 𝑅 ) )
7 4 psrn ( 𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅 )
8 1 7 syl ( 𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅 )
9 8 sqxpeqd ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) = ( ran 𝑅 × ran 𝑅 ) )
10 psrel ( 𝑅 ∈ PosetRel → Rel 𝑅 )
11 1 10 syl ( 𝑅 ∈ TosetRel → Rel 𝑅 )
12 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
13 11 12 sylib ( 𝑅 ∈ TosetRel → 𝑅 = 𝑅 )
14 13 uneq2d ( 𝑅 ∈ TosetRel → ( 𝑅 𝑅 ) = ( 𝑅𝑅 ) )
15 uncom ( 𝑅𝑅 ) = ( 𝑅 𝑅 )
16 14 15 eqtr2di ( 𝑅 ∈ TosetRel → ( 𝑅 𝑅 ) = ( 𝑅 𝑅 ) )
17 6 9 16 3sstr3d ( 𝑅 ∈ TosetRel → ( ran 𝑅 × ran 𝑅 ) ⊆ ( 𝑅 𝑅 ) )
18 df-rn ran 𝑅 = dom 𝑅
19 18 istsr ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( ran 𝑅 × ran 𝑅 ) ⊆ ( 𝑅 𝑅 ) ) )
20 3 17 19 sylanbrc ( 𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )