Metamath Proof Explorer


Theorem cnvtsr

Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion cnvtsr R TosetRel R -1 TosetRel

Proof

Step Hyp Ref Expression
1 tsrps R TosetRel R PosetRel
2 cnvps R PosetRel R -1 PosetRel
3 1 2 syl R TosetRel R -1 PosetRel
4 eqid dom R = dom R
5 4 istsr R TosetRel R PosetRel dom R × dom R R R -1
6 5 simprbi R TosetRel dom R × dom R R R -1
7 4 psrn R PosetRel dom R = ran R
8 1 7 syl R TosetRel dom R = ran R
9 8 sqxpeqd R TosetRel dom R × dom R = ran R × ran R
10 psrel R PosetRel Rel R
11 1 10 syl R TosetRel Rel R
12 dfrel2 Rel R R -1 -1 = R
13 11 12 sylib R TosetRel R -1 -1 = R
14 13 uneq2d R TosetRel R -1 R -1 -1 = R -1 R
15 uncom R -1 R = R R -1
16 14 15 eqtr2di R TosetRel R R -1 = R -1 R -1 -1
17 6 9 16 3sstr3d R TosetRel ran R × ran R R -1 R -1 -1
18 df-rn ran R = dom R -1
19 18 istsr R -1 TosetRel R -1 PosetRel ran R × ran R R -1 R -1 -1
20 3 17 19 sylanbrc R TosetRel R -1 TosetRel