| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
| 2 |
1
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → Rel ◡ 𝑅 ) |
| 3 |
|
cnvco |
⊢ ◡ ( 𝑅 ∘ 𝑅 ) = ( ◡ 𝑅 ∘ ◡ 𝑅 ) |
| 4 |
|
pstr2 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) |
| 5 |
|
cnvss |
⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 → ◡ ( 𝑅 ∘ 𝑅 ) ⊆ ◡ 𝑅 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑅 ∈ PosetRel → ◡ ( 𝑅 ∘ 𝑅 ) ⊆ ◡ 𝑅 ) |
| 7 |
3 6
|
eqsstrrid |
⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ) |
| 8 |
|
psrel |
⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) |
| 9 |
|
dfrel2 |
⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) |
| 10 |
8 9
|
sylib |
⊢ ( 𝑅 ∈ PosetRel → ◡ ◡ 𝑅 = 𝑅 ) |
| 11 |
10
|
ineq2d |
⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( ◡ 𝑅 ∩ 𝑅 ) ) |
| 12 |
|
incom |
⊢ ( ◡ 𝑅 ∩ 𝑅 ) = ( 𝑅 ∩ ◡ 𝑅 ) |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( 𝑅 ∩ ◡ 𝑅 ) ) |
| 14 |
|
psref2 |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 15 |
|
relcnvfld |
⊢ ( Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡ 𝑅 ) |
| 16 |
8 15
|
syl |
⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 = ∪ ∪ ◡ 𝑅 ) |
| 17 |
16
|
reseq2d |
⊢ ( 𝑅 ∈ PosetRel → ( I ↾ ∪ ∪ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) |
| 18 |
13 14 17
|
3eqtrd |
⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) |
| 19 |
|
cnvexg |
⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ V ) |
| 20 |
|
isps |
⊢ ( ◡ 𝑅 ∈ V → ( ◡ 𝑅 ∈ PosetRel ↔ ( Rel ◡ 𝑅 ∧ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ∧ ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑅 ∈ PosetRel → ( ◡ 𝑅 ∈ PosetRel ↔ ( Rel ◡ 𝑅 ∧ ( ◡ 𝑅 ∘ ◡ 𝑅 ) ⊆ ◡ 𝑅 ∧ ( ◡ 𝑅 ∩ ◡ ◡ 𝑅 ) = ( I ↾ ∪ ∪ ◡ 𝑅 ) ) ) ) |
| 22 |
2 7 18 21
|
mpbir3and |
⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) |