Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvpsb | ⊢ ( Rel 𝑅 → ( 𝑅 ∈ PosetRel ↔ ◡ 𝑅 ∈ PosetRel ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvps | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) | |
| 2 | cnvps | ⊢ ( ◡ 𝑅 ∈ PosetRel → ◡ ◡ 𝑅 ∈ PosetRel ) | |
| 3 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 4 | eleq1 | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ ◡ 𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel ) ) | |
| 5 | 4 | biimpd | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ ◡ 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) ) |
| 6 | 3 5 | sylbi | ⊢ ( Rel 𝑅 → ( ◡ ◡ 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) ) |
| 7 | 2 6 | syl5 | ⊢ ( Rel 𝑅 → ( ◡ 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) ) |
| 8 | 1 7 | impbid2 | ⊢ ( Rel 𝑅 → ( 𝑅 ∈ PosetRel ↔ ◡ 𝑅 ∈ PosetRel ) ) |