Metamath Proof Explorer


Theorem cnvpsb

Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009)

Ref Expression
Assertion cnvpsb ( Rel 𝑅 → ( 𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel ) )

Proof

Step Hyp Ref Expression
1 cnvps ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel )
2 cnvps ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel )
3 dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )
4 eleq1 ( 𝑅 = 𝑅 → ( 𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel ) )
5 4 biimpd ( 𝑅 = 𝑅 → ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) )
6 3 5 sylbi ( Rel 𝑅 → ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) )
7 2 6 syl5 ( Rel 𝑅 → ( 𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel ) )
8 1 7 impbid2 ( Rel 𝑅 → ( 𝑅 ∈ PosetRel ↔ 𝑅 ∈ PosetRel ) )