Metamath Proof Explorer


Theorem cnvpsb

Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009)

Ref Expression
Assertion cnvpsb RelRRPosetRelR-1PosetRel

Proof

Step Hyp Ref Expression
1 cnvps RPosetRelR-1PosetRel
2 cnvps R-1PosetRelR-1-1PosetRel
3 dfrel2 RelRR-1-1=R
4 eleq1 R-1-1=RR-1-1PosetRelRPosetRel
5 4 biimpd R-1-1=RR-1-1PosetRelRPosetRel
6 3 5 sylbi RelRR-1-1PosetRelRPosetRel
7 2 6 syl5 RelRR-1PosetRelRPosetRel
8 1 7 impbid2 RelRRPosetRelR-1PosetRel