| Step |
Hyp |
Ref |
Expression |
| 1 |
|
releq |
⊢ ( 𝑟 = 𝑅 → ( Rel 𝑟 ↔ Rel 𝑅 ) ) |
| 2 |
|
coeq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑟 ) ) |
| 3 |
|
coeq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑅 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) |
| 4 |
2 3
|
eqtrd |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) |
| 5 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
| 6 |
4 5
|
sseq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
| 7 |
|
cnveq |
⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) |
| 8 |
5 7
|
ineq12d |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∩ ◡ 𝑟 ) = ( 𝑅 ∩ ◡ 𝑅 ) ) |
| 9 |
|
unieq |
⊢ ( 𝑟 = 𝑅 → ∪ 𝑟 = ∪ 𝑅 ) |
| 10 |
9
|
unieqd |
⊢ ( 𝑟 = 𝑅 → ∪ ∪ 𝑟 = ∪ ∪ 𝑅 ) |
| 11 |
10
|
reseq2d |
⊢ ( 𝑟 = 𝑅 → ( I ↾ ∪ ∪ 𝑟 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 12 |
8 11
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ↔ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) |
| 13 |
1 6 12
|
3anbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( Rel 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ) ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |
| 14 |
|
df-ps |
⊢ PosetRel = { 𝑟 ∣ ( Rel 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ) } |
| 15 |
13 14
|
elab2g |
⊢ ( 𝑅 ∈ 𝐴 → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |