Metamath Proof Explorer


Definition df-fi

Description: Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 ). (Contributed by FL, 27-Apr-2008)

Ref Expression
Assertion df-fi fi=xVz|y𝒫xFinz=y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfi classfi
1 vx setvarx
2 cvv classV
3 vz setvarz
4 vy setvary
5 1 cv setvarx
6 5 cpw class𝒫x
7 cfn classFin
8 6 7 cin class𝒫xFin
9 3 cv setvarz
10 4 cv setvary
11 10 cint classy
12 9 11 wceq wffz=y
13 12 4 8 wrex wffy𝒫xFinz=y
14 13 3 cab classz|y𝒫xFinz=y
15 1 2 14 cmpt classxVz|y𝒫xFinz=y
16 0 15 wceq wfffi=xVz|y𝒫xFinz=y