Metamath Proof Explorer


Theorem ordtbas

Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses ordtval.1 X = dom R
ordtval.2 A = ran x X y X | ¬ y R x
ordtval.3 B = ran x X y X | ¬ x R y
ordtval.4 C = ran a X , b X y X | ¬ y R a ¬ b R y
Assertion ordtbas R TosetRel fi X A B = X A B C

Proof

Step Hyp Ref Expression
1 ordtval.1 X = dom R
2 ordtval.2 A = ran x X y X | ¬ y R x
3 ordtval.3 B = ran x X y X | ¬ x R y
4 ordtval.4 C = ran a X , b X y X | ¬ y R a ¬ b R y
5 snex X V
6 ssun2 A B X A B
7 1 2 3 ordtuni R TosetRel X = X A B
8 dmexg R TosetRel dom R V
9 1 8 eqeltrid R TosetRel X V
10 7 9 eqeltrrd R TosetRel X A B V
11 uniexb X A B V X A B V
12 10 11 sylibr R TosetRel X A B V
13 ssexg A B X A B X A B V A B V
14 6 12 13 sylancr R TosetRel A B V
15 elfiun X V A B V z fi X A B z fi X z fi A B m fi X n fi A B z = m n
16 5 14 15 sylancr R TosetRel z fi X A B z fi X z fi A B m fi X n fi A B z = m n
17 fisn fi X = X
18 ssun1 X X A B C
19 17 18 eqsstri fi X X A B C
20 19 sseli z fi X z X A B C
21 20 a1i R TosetRel z fi X z X A B C
22 1 2 3 4 ordtbas2 R TosetRel fi A B = A B C
23 ssun2 A B C X A B C
24 22 23 eqsstrdi R TosetRel fi A B X A B C
25 24 sseld R TosetRel z fi A B z X A B C
26 fipwuni fi A B 𝒫 A B
27 26 sseli n fi A B n 𝒫 A B
28 27 elpwid n fi A B n A B
29 28 ad2antll R TosetRel m fi X n fi A B n A B
30 6 unissi A B X A B
31 30 7 sseqtrrid R TosetRel A B X
32 31 adantr R TosetRel m fi X n fi A B A B X
33 29 32 sstrd R TosetRel m fi X n fi A B n X
34 simprl R TosetRel m fi X n fi A B m fi X
35 34 17 eleqtrdi R TosetRel m fi X n fi A B m X
36 elsni m X m = X
37 35 36 syl R TosetRel m fi X n fi A B m = X
38 33 37 sseqtrrd R TosetRel m fi X n fi A B n m
39 sseqin2 n m m n = n
40 38 39 sylib R TosetRel m fi X n fi A B m n = n
41 24 sselda R TosetRel n fi A B n X A B C
42 41 adantrl R TosetRel m fi X n fi A B n X A B C
43 40 42 eqeltrd R TosetRel m fi X n fi A B m n X A B C
44 eleq1 z = m n z X A B C m n X A B C
45 43 44 syl5ibrcom R TosetRel m fi X n fi A B z = m n z X A B C
46 45 rexlimdvva R TosetRel m fi X n fi A B z = m n z X A B C
47 21 25 46 3jaod R TosetRel z fi X z fi A B m fi X n fi A B z = m n z X A B C
48 16 47 sylbid R TosetRel z fi X A B z X A B C
49 48 ssrdv R TosetRel fi X A B X A B C
50 ssfii X A B V X A B fi X A B
51 12 50 syl R TosetRel X A B fi X A B
52 51 unssad R TosetRel X fi X A B
53 fiss X A B V A B X A B fi A B fi X A B
54 12 6 53 sylancl R TosetRel fi A B fi X A B
55 22 54 eqsstrrd R TosetRel A B C fi X A B
56 52 55 unssd R TosetRel X A B C fi X A B
57 49 56 eqssd R TosetRel fi X A B = X A B C
58 unass X A B C = X A B C
59 57 58 eqtr4di R TosetRel fi X A B = X A B C