Metamath Proof Explorer


Theorem fiss

Description: Subset relationship for function fi . (Contributed by Jeff Hankins, 7-Oct-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiss BVABfiAfiB

Proof

Step Hyp Ref Expression
1 sstr2 ABByAy
2 1 adantl BVABByAy
3 2 anim1d BVABByxyzyxzyAyxyzyxzy
4 3 ss2abdv BVABy|Byxyzyxzyy|Ayxyzyxzy
5 intss y|Byxyzyxzyy|Ayxyzyxzyy|Ayxyzyxzyy|Byxyzyxzy
6 4 5 syl BVABy|Ayxyzyxzyy|Byxyzyxzy
7 ssexg ABBVAV
8 7 ancoms BVABAV
9 dffi2 AVfiA=y|Ayxyzyxzy
10 8 9 syl BVABfiA=y|Ayxyzyxzy
11 dffi2 BVfiB=y|Byxyzyxzy
12 11 adantr BVABfiB=y|Byxyzyxzy
13 6 10 12 3sstr4d BVABfiAfiB