Metamath Proof Explorer


Theorem inficl

Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion inficl AVxAyAxyAfiA=A

Proof

Step Hyp Ref Expression
1 ssfii AVAfiA
2 eqimss2 z=AAz
3 2 biantrurd z=AxzyzxyzAzxzyzxyz
4 eleq2 z=AxyzxyA
5 4 raleqbi1dv z=AyzxyzyAxyA
6 5 raleqbi1dv z=AxzyzxyzxAyAxyA
7 3 6 bitr3d z=AAzxzyzxyzxAyAxyA
8 7 elabg AVAz|AzxzyzxyzxAyAxyA
9 intss1 Az|Azxzyzxyzz|AzxzyzxyzA
10 8 9 syl6bir AVxAyAxyAz|AzxzyzxyzA
11 dffi2 AVfiA=z|Azxzyzxyz
12 11 sseq1d AVfiAAz|AzxzyzxyzA
13 10 12 sylibrd AVxAyAxyAfiAA
14 eqss fiA=AfiAAAfiA
15 14 simplbi2com AfiAfiAAfiA=A
16 1 13 15 sylsyld AVxAyAxyAfiA=A
17 fiin xfiAyfiAxyfiA
18 17 rgen2 xfiAyfiAxyfiA
19 eleq2 fiA=AxyfiAxyA
20 19 raleqbi1dv fiA=AyfiAxyfiAyAxyA
21 20 raleqbi1dv fiA=AxfiAyfiAxyfiAxAyAxyA
22 18 21 mpbii fiA=AxAyAxyA
23 16 22 impbid1 AVxAyAxyAfiA=A