Metamath Proof Explorer


Theorem fiss

Description: Subset relationship for function fi . (Contributed by Jeff Hankins, 7-Oct-2009) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiss ( ( 𝐵𝑉𝐴𝐵 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 sstr2 ( 𝐴𝐵 → ( 𝐵𝑦𝐴𝑦 ) )
2 1 adantl ( ( 𝐵𝑉𝐴𝐵 ) → ( 𝐵𝑦𝐴𝑦 ) )
3 2 anim1d ( ( 𝐵𝑉𝐴𝐵 ) → ( ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) → ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) ) )
4 3 ss2abdv ( ( 𝐵𝑉𝐴𝐵 ) → { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
5 intss ( { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } → { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
6 4 5 syl ( ( 𝐵𝑉𝐴𝐵 ) → { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
7 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
8 7 ancoms ( ( 𝐵𝑉𝐴𝐵 ) → 𝐴 ∈ V )
9 dffi2 ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
10 8 9 syl ( ( 𝐵𝑉𝐴𝐵 ) → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ( 𝐴𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
11 dffi2 ( 𝐵𝑉 → ( fi ‘ 𝐵 ) = { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
12 11 adantr ( ( 𝐵𝑉𝐴𝐵 ) → ( fi ‘ 𝐵 ) = { 𝑦 ∣ ( 𝐵𝑦 ∧ ∀ 𝑥𝑦𝑧𝑦 ( 𝑥𝑧 ) ∈ 𝑦 ) } )
13 6 10 12 3sstr4d ( ( 𝐵𝑉𝐴𝐵 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐵 ) )