Metamath Proof Explorer


Theorem ordtval

Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses ordtval.1 X=domR
ordtval.2 A=ranxXyX|¬yRx
ordtval.3 B=ranxXyX|¬xRy
Assertion ordtval RVordTopR=topGenfiXAB

Proof

Step Hyp Ref Expression
1 ordtval.1 X=domR
2 ordtval.2 A=ranxXyX|¬yRx
3 ordtval.3 B=ranxXyX|¬xRy
4 elex RVRV
5 dmeq r=Rdomr=domR
6 5 1 eqtr4di r=Rdomr=X
7 6 sneqd r=Rdomr=X
8 rnun ranxdomrydomr|¬yrxxdomrydomr|¬xry=ranxdomrydomr|¬yrxranxdomrydomr|¬xry
9 breq r=RyrxyRx
10 9 notbid r=R¬yrx¬yRx
11 6 10 rabeqbidv r=Rydomr|¬yrx=yX|¬yRx
12 6 11 mpteq12dv r=Rxdomrydomr|¬yrx=xXyX|¬yRx
13 12 rneqd r=Rranxdomrydomr|¬yrx=ranxXyX|¬yRx
14 13 2 eqtr4di r=Rranxdomrydomr|¬yrx=A
15 breq r=RxryxRy
16 15 notbid r=R¬xry¬xRy
17 6 16 rabeqbidv r=Rydomr|¬xry=yX|¬xRy
18 6 17 mpteq12dv r=Rxdomrydomr|¬xry=xXyX|¬xRy
19 18 rneqd r=Rranxdomrydomr|¬xry=ranxXyX|¬xRy
20 19 3 eqtr4di r=Rranxdomrydomr|¬xry=B
21 14 20 uneq12d r=Rranxdomrydomr|¬yrxranxdomrydomr|¬xry=AB
22 8 21 eqtrid r=Rranxdomrydomr|¬yrxxdomrydomr|¬xry=AB
23 7 22 uneq12d r=Rdomrranxdomrydomr|¬yrxxdomrydomr|¬xry=XAB
24 23 fveq2d r=Rfidomrranxdomrydomr|¬yrxxdomrydomr|¬xry=fiXAB
25 24 fveq2d r=RtopGenfidomrranxdomrydomr|¬yrxxdomrydomr|¬xry=topGenfiXAB
26 df-ordt ordTop=rVtopGenfidomrranxdomrydomr|¬yrxxdomrydomr|¬xry
27 fvex topGenfiXABV
28 25 26 27 fvmpt RVordTopR=topGenfiXAB
29 4 28 syl RVordTopR=topGenfiXAB