Description: Define the order topology, given an order <_ , written as r below. A closed subbasis for the order topology is given by the closed rays [ y , +oo ) = { z e. X | y <_ z } and ( -oo , y ] = { z e. X | z <_ y } , along with ( -oo , +oo ) = X itself. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ordt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cordt | |
|
1 | vr | |
|
2 | cvv | |
|
3 | ctg | |
|
4 | cfi | |
|
5 | 1 | cv | |
6 | 5 | cdm | |
7 | 6 | csn | |
8 | vx | |
|
9 | vy | |
|
10 | 9 | cv | |
11 | 8 | cv | |
12 | 10 11 5 | wbr | |
13 | 12 | wn | |
14 | 13 9 6 | crab | |
15 | 8 6 14 | cmpt | |
16 | 11 10 5 | wbr | |
17 | 16 | wn | |
18 | 17 9 6 | crab | |
19 | 8 6 18 | cmpt | |
20 | 15 19 | cun | |
21 | 20 | crn | |
22 | 7 21 | cun | |
23 | 22 4 | cfv | |
24 | 23 3 | cfv | |
25 | 1 2 24 | cmpt | |
26 | 0 25 | wceq | |