Metamath Proof Explorer


Theorem iccordt

Description: A closed interval is closed in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iccordt ABClsdordTop

Proof

Step Hyp Ref Expression
1 df-ov AB=.AB
2 letsr TosetRel
3 ledm *=dom
4 3 ordtcld3 TosetRelx*y*z*|xzzyClsdordTop
5 2 4 mp3an1 x*y*z*|xzzyClsdordTop
6 5 rgen2 x*y*z*|xzzyClsdordTop
7 df-icc .=x*,y*z*|xzzy
8 7 fmpo x*y*z*|xzzyClsdordTop.:*×*ClsdordTop
9 6 8 mpbi .:*×*ClsdordTop
10 letop ordTopTop
11 0cld ordTopTopClsdordTop
12 10 11 ax-mp ClsdordTop
13 9 12 f0cli .ABClsdordTop
14 1 13 eqeltri ABClsdordTop