Metamath Proof Explorer


Theorem ledm

Description: The domain of <_ is RR* . (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Assertion ledm *=dom

Proof

Step Hyp Ref Expression
1 xrleid x*xx
2 lerel Rel
3 2 releldmi xxxdom
4 1 3 syl x*xdom
5 4 ssriv *dom
6 lerelxr *×*
7 dmss *×*domdom*×*
8 6 7 ax-mp domdom*×*
9 dmxpss dom*×**
10 8 9 sstri dom*
11 5 10 eqssi *=dom