Metamath Proof Explorer


Theorem icomnfordt

Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion icomnfordt −∞AordTop

Proof

Step Hyp Ref Expression
1 eqid ranx*x+∞=ranx*x+∞
2 eqid ranx*−∞x=ranx*−∞x
3 eqid ran.=ran.
4 1 2 3 leordtval ordTop=topGenranx*x+∞ranx*−∞xran.
5 letop ordTopTop
6 4 5 eqeltrri topGenranx*x+∞ranx*−∞xran.Top
7 tgclb ranx*x+∞ranx*−∞xran.TopBasestopGenranx*x+∞ranx*−∞xran.Top
8 6 7 mpbir ranx*x+∞ranx*−∞xran.TopBases
9 bastg ranx*x+∞ranx*−∞xran.TopBasesranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
10 8 9 ax-mp ranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
11 10 4 sseqtrri ranx*x+∞ranx*−∞xran.ordTop
12 ssun1 ranx*x+∞ranx*−∞xranx*x+∞ranx*−∞xran.
13 ssun2 ranx*−∞xranx*x+∞ranx*−∞x
14 eqid −∞A=−∞A
15 oveq2 x=A−∞x=−∞A
16 15 rspceeqv A*−∞A=−∞Ax*−∞A=−∞x
17 14 16 mpan2 A*x*−∞A=−∞x
18 eqid x*−∞x=x*−∞x
19 ovex −∞xV
20 18 19 elrnmpti −∞Aranx*−∞xx*−∞A=−∞x
21 17 20 sylibr A*−∞Aranx*−∞x
22 13 21 sselid A*−∞Aranx*x+∞ranx*−∞x
23 12 22 sselid A*−∞Aranx*x+∞ranx*−∞xran.
24 11 23 sselid A*−∞AordTop
25 24 adantl −∞*A*−∞AordTop
26 df-ico .=x*,y*z*|xzz<y
27 26 ixxf .:*×*𝒫*
28 27 fdmi dom.=*×*
29 28 ndmov ¬−∞*A*−∞A=
30 0opn ordTopTopordTop
31 5 30 ax-mp ordTop
32 29 31 eqeltrdi ¬−∞*A*−∞AordTop
33 25 32 pm2.61i −∞AordTop