Metamath Proof Explorer


Theorem leordtval

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 A=ranx*x+∞
leordtval.2 B=ranx*−∞x
leordtval.3 C=ran.
Assertion leordtval ordTop=topGenABC

Proof

Step Hyp Ref Expression
1 leordtval.1 A=ranx*x+∞
2 leordtval.2 B=ranx*−∞x
3 leordtval.3 C=ran.
4 1 2 leordtval2 ordTop=topGenfiAB
5 letsr TosetRel
6 ledm *=dom
7 1 leordtvallem1 A=ranx*y*|¬yx
8 1 2 leordtvallem2 B=ranx*y*|¬xy
9 df-ioo .=a*,b*y*|a<yy<b
10 xrltnle a*y*a<y¬ya
11 10 adantlr a*b*y*a<y¬ya
12 xrltnle y*b*y<b¬by
13 12 ancoms b*y*y<b¬by
14 13 adantll a*b*y*y<b¬by
15 11 14 anbi12d a*b*y*a<yy<b¬ya¬by
16 15 rabbidva a*b*y*|a<yy<b=y*|¬ya¬by
17 16 mpoeq3ia a*,b*y*|a<yy<b=a*,b*y*|¬ya¬by
18 9 17 eqtri .=a*,b*y*|¬ya¬by
19 18 rneqi ran.=rana*,b*y*|¬ya¬by
20 3 19 eqtri C=rana*,b*y*|¬ya¬by
21 6 7 8 20 ordtbas2 TosetRelfiAB=ABC
22 5 21 ax-mp fiAB=ABC
23 22 fveq2i topGenfiAB=topGenABC
24 4 23 eqtri ordTop=topGenABC