Metamath Proof Explorer


Theorem ordtcnv

Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordtcnv RPosetRelordTopR-1=ordTopR

Proof

Step Hyp Ref Expression
1 eqid domR=domR
2 1 psrn RPosetReldomR=ranR
3 2 eqcomd RPosetRelranR=domR
4 3 sneqd RPosetRelranR=domR
5 vex yV
6 vex xV
7 5 6 brcnv yR-1xxRy
8 7 a1i RPosetRelyR-1xxRy
9 8 notbid RPosetRel¬yR-1x¬xRy
10 3 9 rabeqbidv RPosetRelyranR|¬yR-1x=ydomR|¬xRy
11 3 10 mpteq12dv RPosetRelxranRyranR|¬yR-1x=xdomRydomR|¬xRy
12 11 rneqd RPosetRelranxranRyranR|¬yR-1x=ranxdomRydomR|¬xRy
13 6 5 brcnv xR-1yyRx
14 13 a1i RPosetRelxR-1yyRx
15 14 notbid RPosetRel¬xR-1y¬yRx
16 3 15 rabeqbidv RPosetRelyranR|¬xR-1y=ydomR|¬yRx
17 3 16 mpteq12dv RPosetRelxranRyranR|¬xR-1y=xdomRydomR|¬yRx
18 17 rneqd RPosetRelranxranRyranR|¬xR-1y=ranxdomRydomR|¬yRx
19 12 18 uneq12d RPosetRelranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y=ranxdomRydomR|¬xRyranxdomRydomR|¬yRx
20 uncom ranxdomRydomR|¬xRyranxdomRydomR|¬yRx=ranxdomRydomR|¬yRxranxdomRydomR|¬xRy
21 19 20 eqtrdi RPosetRelranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y=ranxdomRydomR|¬yRxranxdomRydomR|¬xRy
22 4 21 uneq12d RPosetRelranRranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y=domRranxdomRydomR|¬yRxranxdomRydomR|¬xRy
23 22 fveq2d RPosetRelfiranRranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y=fidomRranxdomRydomR|¬yRxranxdomRydomR|¬xRy
24 23 fveq2d RPosetReltopGenfiranRranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y=topGenfidomRranxdomRydomR|¬yRxranxdomRydomR|¬xRy
25 cnvps RPosetRelR-1PosetRel
26 df-rn ranR=domR-1
27 eqid ranxranRyranR|¬yR-1x=ranxranRyranR|¬yR-1x
28 eqid ranxranRyranR|¬xR-1y=ranxranRyranR|¬xR-1y
29 26 27 28 ordtval R-1PosetRelordTopR-1=topGenfiranRranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y
30 25 29 syl RPosetRelordTopR-1=topGenfiranRranxranRyranR|¬yR-1xranxranRyranR|¬xR-1y
31 eqid ranxdomRydomR|¬yRx=ranxdomRydomR|¬yRx
32 eqid ranxdomRydomR|¬xRy=ranxdomRydomR|¬xRy
33 1 31 32 ordtval RPosetRelordTopR=topGenfidomRranxdomRydomR|¬yRxranxdomRydomR|¬xRy
34 24 30 33 3eqtr4d RPosetRelordTopR-1=ordTopR