Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- dom R = dom R |
2 |
1
|
psrn |
|- ( R e. PosetRel -> dom R = ran R ) |
3 |
2
|
eqcomd |
|- ( R e. PosetRel -> ran R = dom R ) |
4 |
3
|
sneqd |
|- ( R e. PosetRel -> { ran R } = { dom R } ) |
5 |
|
vex |
|- y e. _V |
6 |
|
vex |
|- x e. _V |
7 |
5 6
|
brcnv |
|- ( y `' R x <-> x R y ) |
8 |
7
|
a1i |
|- ( R e. PosetRel -> ( y `' R x <-> x R y ) ) |
9 |
8
|
notbid |
|- ( R e. PosetRel -> ( -. y `' R x <-> -. x R y ) ) |
10 |
3 9
|
rabeqbidv |
|- ( R e. PosetRel -> { y e. ran R | -. y `' R x } = { y e. dom R | -. x R y } ) |
11 |
3 10
|
mpteq12dv |
|- ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
12 |
11
|
rneqd |
|- ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
13 |
6 5
|
brcnv |
|- ( x `' R y <-> y R x ) |
14 |
13
|
a1i |
|- ( R e. PosetRel -> ( x `' R y <-> y R x ) ) |
15 |
14
|
notbid |
|- ( R e. PosetRel -> ( -. x `' R y <-> -. y R x ) ) |
16 |
3 15
|
rabeqbidv |
|- ( R e. PosetRel -> { y e. ran R | -. x `' R y } = { y e. dom R | -. y R x } ) |
17 |
3 16
|
mpteq12dv |
|- ( R e. PosetRel -> ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ( x e. dom R |-> { y e. dom R | -. y R x } ) ) |
18 |
17
|
rneqd |
|- ( R e. PosetRel -> ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) |
19 |
12 18
|
uneq12d |
|- ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) ) |
20 |
|
uncom |
|- ( ran ( x e. dom R |-> { y e. dom R | -. x R y } ) u. ran ( x e. dom R |-> { y e. dom R | -. y R x } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) |
21 |
19 20
|
eqtrdi |
|- ( R e. PosetRel -> ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) = ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) |
22 |
4 21
|
uneq12d |
|- ( R e. PosetRel -> ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) = ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) |
23 |
22
|
fveq2d |
|- ( R e. PosetRel -> ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) = ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) |
24 |
23
|
fveq2d |
|- ( R e. PosetRel -> ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) |
25 |
|
cnvps |
|- ( R e. PosetRel -> `' R e. PosetRel ) |
26 |
|
df-rn |
|- ran R = dom `' R |
27 |
|
eqid |
|- ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) = ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) |
28 |
|
eqid |
|- ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) = ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) |
29 |
26 27 28
|
ordtval |
|- ( `' R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) |
30 |
25 29
|
syl |
|- ( R e. PosetRel -> ( ordTop ` `' R ) = ( topGen ` ( fi ` ( { ran R } u. ( ran ( x e. ran R |-> { y e. ran R | -. y `' R x } ) u. ran ( x e. ran R |-> { y e. ran R | -. x `' R y } ) ) ) ) ) ) |
31 |
|
eqid |
|- ran ( x e. dom R |-> { y e. dom R | -. y R x } ) = ran ( x e. dom R |-> { y e. dom R | -. y R x } ) |
32 |
|
eqid |
|- ran ( x e. dom R |-> { y e. dom R | -. x R y } ) = ran ( x e. dom R |-> { y e. dom R | -. x R y } ) |
33 |
1 31 32
|
ordtval |
|- ( R e. PosetRel -> ( ordTop ` R ) = ( topGen ` ( fi ` ( { dom R } u. ( ran ( x e. dom R |-> { y e. dom R | -. y R x } ) u. ran ( x e. dom R |-> { y e. dom R | -. x R y } ) ) ) ) ) ) |
34 |
24 30 33
|
3eqtr4d |
|- ( R e. PosetRel -> ( ordTop ` `' R ) = ( ordTop ` R ) ) |