Metamath Proof Explorer


Theorem mnfnei

Description: A neighborhood of -oo contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion mnfnei AordTop−∞Ax−∞xA

Proof

Step Hyp Ref Expression
1 eqid rany*y+∞=rany*y+∞
2 eqid rany*−∞y=rany*−∞y
3 eqid ran.=ran.
4 1 2 3 leordtval ordTop=topGenrany*y+∞rany*−∞yran.
5 4 eleq2i AordTopAtopGenrany*y+∞rany*−∞yran.
6 tg2 AtopGenrany*y+∞rany*−∞yran.−∞Aurany*y+∞rany*−∞yran.−∞uuA
7 elun urany*y+∞rany*−∞yran.urany*y+∞rany*−∞yuran.
8 elun urany*y+∞rany*−∞yurany*y+∞urany*−∞y
9 eqid y*y+∞=y*y+∞
10 9 elrnmpt uVurany*y+∞y*u=y+∞
11 10 elv urany*y+∞y*u=y+∞
12 nltmnf y*¬y<−∞
13 pnfxr +∞*
14 elioc1 y*+∞*−∞y+∞−∞*y<−∞−∞+∞
15 13 14 mpan2 y*−∞y+∞−∞*y<−∞−∞+∞
16 simp2 −∞*y<−∞−∞+∞y<−∞
17 15 16 syl6bi y*−∞y+∞y<−∞
18 12 17 mtod y*¬−∞y+∞
19 eleq2 u=y+∞−∞u−∞y+∞
20 19 notbid u=y+∞¬−∞u¬−∞y+∞
21 18 20 syl5ibrcom y*u=y+∞¬−∞u
22 21 rexlimiv y*u=y+∞¬−∞u
23 22 pm2.21d y*u=y+∞−∞ux−∞xA
24 23 adantrd y*u=y+∞−∞uuAx−∞xA
25 11 24 sylbi urany*y+∞−∞uuAx−∞xA
26 eqid y*−∞y=y*−∞y
27 26 elrnmpt uVurany*−∞yy*u=−∞y
28 27 elv urany*−∞yy*u=−∞y
29 mnfxr −∞*
30 29 a1i −∞uuAy*u=−∞y−∞*
31 0xr 0*
32 simprl −∞uuAy*u=−∞yy*
33 ifcl 0*y*if0y0y*
34 31 32 33 sylancr −∞uuAy*u=−∞yif0y0y*
35 13 a1i −∞uuAy*u=−∞y+∞*
36 mnflt0 −∞<0
37 simpll −∞uuAy*u=−∞y−∞u
38 simprr −∞uuAy*u=−∞yu=−∞y
39 37 38 eleqtrd −∞uuAy*u=−∞y−∞−∞y
40 elico1 −∞*y*−∞−∞y−∞*−∞−∞−∞<y
41 29 32 40 sylancr −∞uuAy*u=−∞y−∞−∞y−∞*−∞−∞−∞<y
42 39 41 mpbid −∞uuAy*u=−∞y−∞*−∞−∞−∞<y
43 42 simp3d −∞uuAy*u=−∞y−∞<y
44 breq2 0=if0y0y−∞<0−∞<if0y0y
45 breq2 y=if0y0y−∞<y−∞<if0y0y
46 44 45 ifboth −∞<0−∞<y−∞<if0y0y
47 36 43 46 sylancr −∞uuAy*u=−∞y−∞<if0y0y
48 31 a1i −∞uuAy*u=−∞y0*
49 xrmin1 0*y*if0y0y0
50 31 32 49 sylancr −∞uuAy*u=−∞yif0y0y0
51 0re 0
52 ltpnf 00<+∞
53 51 52 mp1i −∞uuAy*u=−∞y0<+∞
54 34 48 35 50 53 xrlelttrd −∞uuAy*u=−∞yif0y0y<+∞
55 xrre2 −∞*if0y0y*+∞*−∞<if0y0yif0y0y<+∞if0y0y
56 30 34 35 47 54 55 syl32anc −∞uuAy*u=−∞yif0y0y
57 xrmin2 0*y*if0y0yy
58 31 32 57 sylancr −∞uuAy*u=−∞yif0y0yy
59 df-ico .=a*,b*c*|acc<b
60 xrltletr x*if0y0y*y*x<if0y0yif0y0yyx<y
61 59 59 60 ixxss2 y*if0y0yy−∞if0y0y−∞y
62 32 58 61 syl2anc −∞uuAy*u=−∞y−∞if0y0y−∞y
63 simplr −∞uuAy*u=−∞yuA
64 38 63 eqsstrrd −∞uuAy*u=−∞y−∞yA
65 62 64 sstrd −∞uuAy*u=−∞y−∞if0y0yA
66 oveq2 x=if0y0y−∞x=−∞if0y0y
67 66 sseq1d x=if0y0y−∞xA−∞if0y0yA
68 67 rspcev if0y0y−∞if0y0yAx−∞xA
69 56 65 68 syl2anc −∞uuAy*u=−∞yx−∞xA
70 69 rexlimdvaa −∞uuAy*u=−∞yx−∞xA
71 70 com12 y*u=−∞y−∞uuAx−∞xA
72 28 71 sylbi urany*−∞y−∞uuAx−∞xA
73 25 72 jaoi urany*y+∞urany*−∞y−∞uuAx−∞xA
74 8 73 sylbi urany*y+∞rany*−∞y−∞uuAx−∞xA
75 mnfnre −∞
76 75 neli ¬−∞
77 elssuni uran.uran.
78 unirnioo =ran.
79 77 78 sseqtrrdi uran.u
80 79 sseld uran.−∞u−∞
81 76 80 mtoi uran.¬−∞u
82 81 pm2.21d uran.−∞ux−∞xA
83 82 adantrd uran.−∞uuAx−∞xA
84 74 83 jaoi urany*y+∞rany*−∞yuran.−∞uuAx−∞xA
85 7 84 sylbi urany*y+∞rany*−∞yran.−∞uuAx−∞xA
86 85 rexlimiv urany*y+∞rany*−∞yran.−∞uuAx−∞xA
87 6 86 syl AtopGenrany*y+∞rany*−∞yran.−∞Ax−∞xA
88 5 87 sylanb AordTop−∞Ax−∞xA