Metamath Proof Explorer


Theorem xrre2

Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrre2 A * B * C * A < B B < C B

Proof

Step Hyp Ref Expression
1 mnfle A * −∞ A
2 1 adantr A * B * −∞ A
3 mnfxr −∞ *
4 xrlelttr −∞ * A * B * −∞ A A < B −∞ < B
5 3 4 mp3an1 A * B * −∞ A A < B −∞ < B
6 2 5 mpand A * B * A < B −∞ < B
7 6 3adant3 A * B * C * A < B −∞ < B
8 pnfge C * C +∞
9 8 adantl B * C * C +∞
10 pnfxr +∞ *
11 xrltletr B * C * +∞ * B < C C +∞ B < +∞
12 10 11 mp3an3 B * C * B < C C +∞ B < +∞
13 9 12 mpan2d B * C * B < C B < +∞
14 13 3adant1 A * B * C * B < C B < +∞
15 7 14 anim12d A * B * C * A < B B < C −∞ < B B < +∞
16 xrrebnd B * B −∞ < B B < +∞
17 16 3ad2ant2 A * B * C * B −∞ < B B < +∞
18 15 17 sylibrd A * B * C * A < B B < C B
19 18 imp A * B * C * A < B B < C B