Metamath Proof Explorer


Theorem xrre2

Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrre2 A*B*C*A<BB<CB

Proof

Step Hyp Ref Expression
1 mnfle A*−∞A
2 1 adantr A*B*−∞A
3 mnfxr −∞*
4 xrlelttr −∞*A*B*−∞AA<B−∞<B
5 3 4 mp3an1 A*B*−∞AA<B−∞<B
6 2 5 mpand A*B*A<B−∞<B
7 6 3adant3 A*B*C*A<B−∞<B
8 pnfge C*C+∞
9 8 adantl B*C*C+∞
10 pnfxr +∞*
11 xrltletr B*C*+∞*B<CC+∞B<+∞
12 10 11 mp3an3 B*C*B<CC+∞B<+∞
13 9 12 mpan2d B*C*B<CB<+∞
14 13 3adant1 A*B*C*B<CB<+∞
15 7 14 anim12d A*B*C*A<BB<C−∞<BB<+∞
16 xrrebnd B*B−∞<BB<+∞
17 16 3ad2ant2 A*B*C*B−∞<BB<+∞
18 15 17 sylibrd A*B*C*A<BB<CB
19 18 imp A*B*C*A<BB<CB