Metamath Proof Explorer


Theorem xrmin1

Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmin1 A*B*ifABABA

Proof

Step Hyp Ref Expression
1 iftrue ABifABAB=A
2 1 adantl A*B*ABifABAB=A
3 xrleid A*AA
4 3 ad2antrr A*B*ABAA
5 2 4 eqbrtrd A*B*ABifABABA
6 iffalse ¬ABifABAB=B
7 6 adantl A*B*¬ABifABAB=B
8 xrletri A*B*ABBA
9 8 orcanai A*B*¬ABBA
10 7 9 eqbrtrd A*B*¬ABifABABA
11 5 10 pm2.61dan A*B*ifABABA