Metamath Proof Explorer


Theorem ordttop

Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordttop RVordTopRTop

Proof

Step Hyp Ref Expression
1 eqid domR=domR
2 1 ordttopon RVordTopRTopOndomR
3 topontop ordTopRTopOndomRordTopRTop
4 2 3 syl RVordTopRTop