Metamath Proof Explorer


Theorem xrstopn

Description: The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrstopn ordTop=TopOpen𝑠*

Proof

Step Hyp Ref Expression
1 letopon ordTopTopOn*
2 xrsbas *=Base𝑠*
3 xrstset ordTop=TopSet𝑠*
4 2 3 topontopn ordTopTopOn*ordTop=TopOpen𝑠*
5 1 4 ax-mp ordTop=TopOpen𝑠*