Metamath Proof Explorer


Theorem ordtresticc

Description: The restriction of the less than order to a closed interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion ordtresticc ordTop𝑡AB=ordTopAB×AB

Proof

Step Hyp Ref Expression
1 iccssxr AB*
2 iccss2 xAByABxyAB
3 1 2 ordtrestixx ordTop𝑡AB=ordTopAB×AB