Metamath Proof Explorer


Theorem iccss2

Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion iccss2 CABDABCDAB

Proof

Step Hyp Ref Expression
1 df-icc .=x*,y*z*|xzzy
2 1 elixx3g CABA*B*C*ACCB
3 2 simplbi CABA*B*C*
4 3 adantr CABDABA*B*C*
5 4 simp1d CABDABA*
6 4 simp2d CABDABB*
7 2 simprbi CABACCB
8 7 adantr CABDABACCB
9 8 simpld CABDABAC
10 1 elixx3g DABA*B*D*ADDB
11 10 simprbi DABADDB
12 11 simprd DABDB
13 12 adantl CABDABDB
14 xrletr A*C*w*ACCwAw
15 xrletr w*D*B*wDDBwB
16 1 1 14 15 ixxss12 A*B*ACDBCDAB
17 5 6 9 13 16 syl22anc CABDABCDAB