Metamath Proof Explorer


Theorem ixxss12

Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses ixx.1 O=x*,y*z*|xRzzSy
ixxss12.2 P=x*,y*z*|xTzzUy
ixxss12.3 A*C*w*AWCCTwARw
ixxss12.4 w*D*B*wUDDXBwSB
Assertion ixxss12 A*B*AWCDXBCPDAOB

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 ixxss12.2 P=x*,y*z*|xTzzUy
3 ixxss12.3 A*C*w*AWCCTwARw
4 ixxss12.4 w*D*B*wUDDXBwSB
5 2 elixx3g wCPDC*D*w*CTwwUD
6 5 simplbi wCPDC*D*w*
7 6 adantl A*B*AWCDXBwCPDC*D*w*
8 7 simp3d A*B*AWCDXBwCPDw*
9 simplrl A*B*AWCDXBwCPDAWC
10 5 simprbi wCPDCTwwUD
11 10 adantl A*B*AWCDXBwCPDCTwwUD
12 11 simpld A*B*AWCDXBwCPDCTw
13 simplll A*B*AWCDXBwCPDA*
14 7 simp1d A*B*AWCDXBwCPDC*
15 13 14 8 3 syl3anc A*B*AWCDXBwCPDAWCCTwARw
16 9 12 15 mp2and A*B*AWCDXBwCPDARw
17 11 simprd A*B*AWCDXBwCPDwUD
18 simplrr A*B*AWCDXBwCPDDXB
19 7 simp2d A*B*AWCDXBwCPDD*
20 simpllr A*B*AWCDXBwCPDB*
21 8 19 20 4 syl3anc A*B*AWCDXBwCPDwUDDXBwSB
22 17 18 21 mp2and A*B*AWCDXBwCPDwSB
23 1 elixx1 A*B*wAOBw*ARwwSB
24 23 ad2antrr A*B*AWCDXBwCPDwAOBw*ARwwSB
25 8 16 22 24 mpbir3and A*B*AWCDXBwCPDwAOB
26 25 ex A*B*AWCDXBwCPDwAOB
27 26 ssrdv A*B*AWCDXBCPDAOB