Metamath Proof Explorer


Theorem cpmidpmat

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019) (Revised by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A=NMatR
cpmidgsum.b B=BaseA
cpmidgsum.p P=Poly1R
cpmidgsum.y Y=NMatP
cpmidgsum.x X=var1R
cpmidgsum.e ×˙=mulGrpP
cpmidgsum.m ·˙=Y
cpmidgsum.1 1˙=1Y
cpmidgsum.u U=algScP
cpmidgsum.c C=NCharPlyMatR
cpmidgsum.k K=CM
cpmidgsum.h H=K·˙1˙
cpmidgsumm2pm.o O=1A
cpmidgsumm2pm.m ˙=A
cpmidgsumm2pm.t T=NmatToPolyMatR
cpmidgsum.w W=BaseY
cpmidpmat.p Q=Poly1A
cpmidpmat.z Z=var1A
cpmidpmat.m ˙=Q
cpmidpmat.e E=mulGrpQ
cpmidpmat.i I=NpMatToMatPolyR
Assertion cpmidpmat NFinRCRingMBIH=Qn0coe1Kn˙O˙nEZ

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A=NMatR
2 cpmidgsum.b B=BaseA
3 cpmidgsum.p P=Poly1R
4 cpmidgsum.y Y=NMatP
5 cpmidgsum.x X=var1R
6 cpmidgsum.e ×˙=mulGrpP
7 cpmidgsum.m ·˙=Y
8 cpmidgsum.1 1˙=1Y
9 cpmidgsum.u U=algScP
10 cpmidgsum.c C=NCharPlyMatR
11 cpmidgsum.k K=CM
12 cpmidgsum.h H=K·˙1˙
13 cpmidgsumm2pm.o O=1A
14 cpmidgsumm2pm.m ˙=A
15 cpmidgsumm2pm.t T=NmatToPolyMatR
16 cpmidgsum.w W=BaseY
17 cpmidpmat.p Q=Poly1A
18 cpmidpmat.z Z=var1A
19 cpmidpmat.m ˙=Q
20 cpmidpmat.e E=mulGrpQ
21 cpmidpmat.i I=NpMatToMatPolyR
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cpmidgsumm2pm NFinRCRingMBH=Yn0n×˙X·˙Tcoe1Kn˙O
23 22 fveq2d NFinRCRingMBIH=IYn0n×˙X·˙Tcoe1Kn˙O
24 eqid k0coe1Kk˙O=k0coe1Kk˙O
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem1 n0k0coe1Kk˙On=coe1Kn˙O
26 25 eqcomd n0coe1Kn˙O=k0coe1Kk˙On
27 26 adantl NFinRCRingMBn0coe1Kn˙O=k0coe1Kk˙On
28 27 fveq2d NFinRCRingMBn0Tcoe1Kn˙O=Tk0coe1Kk˙On
29 28 oveq2d NFinRCRingMBn0n×˙X·˙Tcoe1Kn˙O=n×˙X·˙Tk0coe1Kk˙On
30 29 mpteq2dva NFinRCRingMBn0n×˙X·˙Tcoe1Kn˙O=n0n×˙X·˙Tk0coe1Kk˙On
31 30 oveq2d NFinRCRingMBYn0n×˙X·˙Tcoe1Kn˙O=Yn0n×˙X·˙Tk0coe1Kk˙On
32 31 fveq2d NFinRCRingMBIYn0n×˙X·˙Tcoe1Kn˙O=IYn0n×˙X·˙Tk0coe1Kk˙On
33 3simpa NFinRCRingMBNFinRCRing
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem2 NFinRCRingMBk0coe1Kk˙OB0
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem3 NFinRCRingMBfinSupp0Ak0coe1Kk˙O
36 fveq2 k=xcoe1Kk=coe1Kx
37 36 oveq1d k=xcoe1Kk˙O=coe1Kx˙O
38 37 cbvmptv k0coe1Kk˙O=x0coe1Kx˙O
39 38 eleq1i k0coe1Kk˙OB0x0coe1Kx˙OB0
40 38 breq1i finSupp0Ak0coe1Kk˙OfinSupp0Ax0coe1Kx˙O
41 39 40 anbi12i k0coe1Kk˙OB0finSupp0Ak0coe1Kk˙Ox0coe1Kx˙OB0finSupp0Ax0coe1Kx˙O
42 3 4 16 19 20 18 1 2 17 21 6 5 7 15 pm2mp NFinRCRingx0coe1Kx˙OB0finSupp0Ax0coe1Kx˙OIYn0n×˙X·˙Tx0coe1Kx˙On=Qn0x0coe1Kx˙On˙nEZ
43 41 42 sylan2b NFinRCRingk0coe1Kk˙OB0finSupp0Ak0coe1Kk˙OIYn0n×˙X·˙Tx0coe1Kx˙On=Qn0x0coe1Kx˙On˙nEZ
44 33 34 35 43 syl12anc NFinRCRingMBIYn0n×˙X·˙Tx0coe1Kx˙On=Qn0x0coe1Kx˙On˙nEZ
45 38 fveq1i k0coe1Kk˙On=x0coe1Kx˙On
46 45 fveq2i Tk0coe1Kk˙On=Tx0coe1Kx˙On
47 46 oveq2i n×˙X·˙Tk0coe1Kk˙On=n×˙X·˙Tx0coe1Kx˙On
48 47 mpteq2i n0n×˙X·˙Tk0coe1Kk˙On=n0n×˙X·˙Tx0coe1Kx˙On
49 48 oveq2i Yn0n×˙X·˙Tk0coe1Kk˙On=Yn0n×˙X·˙Tx0coe1Kx˙On
50 49 fveq2i IYn0n×˙X·˙Tk0coe1Kk˙On=IYn0n×˙X·˙Tx0coe1Kx˙On
51 45 oveq1i k0coe1Kk˙On˙nEZ=x0coe1Kx˙On˙nEZ
52 51 mpteq2i n0k0coe1Kk˙On˙nEZ=n0x0coe1Kx˙On˙nEZ
53 52 oveq2i Qn0k0coe1Kk˙On˙nEZ=Qn0x0coe1Kx˙On˙nEZ
54 44 50 53 3eqtr4g NFinRCRingMBIYn0n×˙X·˙Tk0coe1Kk˙On=Qn0k0coe1Kk˙On˙nEZ
55 32 54 eqtrd NFinRCRingMBIYn0n×˙X·˙Tcoe1Kn˙O=Qn0k0coe1Kk˙On˙nEZ
56 25 adantl NFinRCRingMBn0k0coe1Kk˙On=coe1Kn˙O
57 56 oveq1d NFinRCRingMBn0k0coe1Kk˙On˙nEZ=coe1Kn˙O˙nEZ
58 57 mpteq2dva NFinRCRingMBn0k0coe1Kk˙On˙nEZ=n0coe1Kn˙O˙nEZ
59 58 oveq2d NFinRCRingMBQn0k0coe1Kk˙On˙nEZ=Qn0coe1Kn˙O˙nEZ
60 23 55 59 3eqtrd NFinRCRingMBIH=Qn0coe1Kn˙O˙nEZ