Metamath Proof Explorer


Theorem cpmidpmat

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019) (Revised by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
cpmidgsumm2pm.o O = 1 A
cpmidgsumm2pm.m ˙ = A
cpmidgsumm2pm.t T = N matToPolyMat R
cpmidgsum.w W = Base Y
cpmidpmat.p Q = Poly 1 A
cpmidpmat.z Z = var 1 A
cpmidpmat.m ˙ = Q
cpmidpmat.e E = mulGrp Q
cpmidpmat.i I = N pMatToMatPoly R
Assertion cpmidpmat N Fin R CRing M B I H = Q n 0 coe 1 K n ˙ O ˙ n E Z

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 cpmidgsumm2pm.o O = 1 A
14 cpmidgsumm2pm.m ˙ = A
15 cpmidgsumm2pm.t T = N matToPolyMat R
16 cpmidgsum.w W = Base Y
17 cpmidpmat.p Q = Poly 1 A
18 cpmidpmat.z Z = var 1 A
19 cpmidpmat.m ˙ = Q
20 cpmidpmat.e E = mulGrp Q
21 cpmidpmat.i I = N pMatToMatPoly R
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cpmidgsumm2pm N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O
23 22 fveq2d N Fin R CRing M B I H = I Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O
24 eqid k 0 coe 1 K k ˙ O = k 0 coe 1 K k ˙ O
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem1 n 0 k 0 coe 1 K k ˙ O n = coe 1 K n ˙ O
26 25 eqcomd n 0 coe 1 K n ˙ O = k 0 coe 1 K k ˙ O n
27 26 adantl N Fin R CRing M B n 0 coe 1 K n ˙ O = k 0 coe 1 K k ˙ O n
28 27 fveq2d N Fin R CRing M B n 0 T coe 1 K n ˙ O = T k 0 coe 1 K k ˙ O n
29 28 oveq2d N Fin R CRing M B n 0 n × ˙ X · ˙ T coe 1 K n ˙ O = n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n
30 29 mpteq2dva N Fin R CRing M B n 0 n × ˙ X · ˙ T coe 1 K n ˙ O = n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n
31 30 oveq2d N Fin R CRing M B Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O = Y n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n
32 31 fveq2d N Fin R CRing M B I Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O = I Y n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n
33 3simpa N Fin R CRing M B N Fin R CRing
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem2 N Fin R CRing M B k 0 coe 1 K k ˙ O B 0
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 cpmidpmatlem3 N Fin R CRing M B finSupp 0 A k 0 coe 1 K k ˙ O
36 fveq2 k = x coe 1 K k = coe 1 K x
37 36 oveq1d k = x coe 1 K k ˙ O = coe 1 K x ˙ O
38 37 cbvmptv k 0 coe 1 K k ˙ O = x 0 coe 1 K x ˙ O
39 38 eleq1i k 0 coe 1 K k ˙ O B 0 x 0 coe 1 K x ˙ O B 0
40 38 breq1i finSupp 0 A k 0 coe 1 K k ˙ O finSupp 0 A x 0 coe 1 K x ˙ O
41 39 40 anbi12i k 0 coe 1 K k ˙ O B 0 finSupp 0 A k 0 coe 1 K k ˙ O x 0 coe 1 K x ˙ O B 0 finSupp 0 A x 0 coe 1 K x ˙ O
42 3 4 16 19 20 18 1 2 17 21 6 5 7 15 pm2mp N Fin R CRing x 0 coe 1 K x ˙ O B 0 finSupp 0 A x 0 coe 1 K x ˙ O I Y n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n = Q n 0 x 0 coe 1 K x ˙ O n ˙ n E Z
43 41 42 sylan2b N Fin R CRing k 0 coe 1 K k ˙ O B 0 finSupp 0 A k 0 coe 1 K k ˙ O I Y n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n = Q n 0 x 0 coe 1 K x ˙ O n ˙ n E Z
44 33 34 35 43 syl12anc N Fin R CRing M B I Y n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n = Q n 0 x 0 coe 1 K x ˙ O n ˙ n E Z
45 38 fveq1i k 0 coe 1 K k ˙ O n = x 0 coe 1 K x ˙ O n
46 45 fveq2i T k 0 coe 1 K k ˙ O n = T x 0 coe 1 K x ˙ O n
47 46 oveq2i n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n = n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n
48 47 mpteq2i n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n = n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n
49 48 oveq2i Y n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n = Y n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n
50 49 fveq2i I Y n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n = I Y n 0 n × ˙ X · ˙ T x 0 coe 1 K x ˙ O n
51 45 oveq1i k 0 coe 1 K k ˙ O n ˙ n E Z = x 0 coe 1 K x ˙ O n ˙ n E Z
52 51 mpteq2i n 0 k 0 coe 1 K k ˙ O n ˙ n E Z = n 0 x 0 coe 1 K x ˙ O n ˙ n E Z
53 52 oveq2i Q n 0 k 0 coe 1 K k ˙ O n ˙ n E Z = Q n 0 x 0 coe 1 K x ˙ O n ˙ n E Z
54 44 50 53 3eqtr4g N Fin R CRing M B I Y n 0 n × ˙ X · ˙ T k 0 coe 1 K k ˙ O n = Q n 0 k 0 coe 1 K k ˙ O n ˙ n E Z
55 32 54 eqtrd N Fin R CRing M B I Y n 0 n × ˙ X · ˙ T coe 1 K n ˙ O = Q n 0 k 0 coe 1 K k ˙ O n ˙ n E Z
56 25 adantl N Fin R CRing M B n 0 k 0 coe 1 K k ˙ O n = coe 1 K n ˙ O
57 56 oveq1d N Fin R CRing M B n 0 k 0 coe 1 K k ˙ O n ˙ n E Z = coe 1 K n ˙ O ˙ n E Z
58 57 mpteq2dva N Fin R CRing M B n 0 k 0 coe 1 K k ˙ O n ˙ n E Z = n 0 coe 1 K n ˙ O ˙ n E Z
59 58 oveq2d N Fin R CRing M B Q n 0 k 0 coe 1 K k ˙ O n ˙ n E Z = Q n 0 coe 1 K n ˙ O ˙ n E Z
60 23 55 59 3eqtrd N Fin R CRing M B I H = Q n 0 coe 1 K n ˙ O ˙ n E Z