Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as polynomial over the ring of matrices. (Contributed by AV, 14-Nov-2019) (Revised by AV, 7-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmidgsum.a | |
|
cpmidgsum.b | |
||
cpmidgsum.p | |
||
cpmidgsum.y | |
||
cpmidgsum.x | |
||
cpmidgsum.e | |
||
cpmidgsum.m | |
||
cpmidgsum.1 | |
||
cpmidgsum.u | |
||
cpmidgsum.c | |
||
cpmidgsum.k | |
||
cpmidgsum.h | |
||
cpmidgsumm2pm.o | |
||
cpmidgsumm2pm.m | |
||
cpmidgsumm2pm.t | |
||
cpmidgsum.w | |
||
cpmidpmat.p | |
||
cpmidpmat.z | |
||
cpmidpmat.m | |
||
cpmidpmat.e | |
||
cpmidpmat.i | |
||
Assertion | cpmidpmat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | |
|
2 | cpmidgsum.b | |
|
3 | cpmidgsum.p | |
|
4 | cpmidgsum.y | |
|
5 | cpmidgsum.x | |
|
6 | cpmidgsum.e | |
|
7 | cpmidgsum.m | |
|
8 | cpmidgsum.1 | |
|
9 | cpmidgsum.u | |
|
10 | cpmidgsum.c | |
|
11 | cpmidgsum.k | |
|
12 | cpmidgsum.h | |
|
13 | cpmidgsumm2pm.o | |
|
14 | cpmidgsumm2pm.m | |
|
15 | cpmidgsumm2pm.t | |
|
16 | cpmidgsum.w | |
|
17 | cpmidpmat.p | |
|
18 | cpmidpmat.z | |
|
19 | cpmidpmat.m | |
|
20 | cpmidpmat.e | |
|
21 | cpmidpmat.i | |
|
22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | cpmidgsumm2pm | |
23 | 22 | fveq2d | |
24 | eqid | |
|
25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem1 | |
26 | 25 | eqcomd | |
27 | 26 | adantl | |
28 | 27 | fveq2d | |
29 | 28 | oveq2d | |
30 | 29 | mpteq2dva | |
31 | 30 | oveq2d | |
32 | 31 | fveq2d | |
33 | 3simpa | |
|
34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem2 | |
35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem3 | |
36 | fveq2 | |
|
37 | 36 | oveq1d | |
38 | 37 | cbvmptv | |
39 | 38 | eleq1i | |
40 | 38 | breq1i | |
41 | 39 40 | anbi12i | |
42 | 3 4 16 19 20 18 1 2 17 21 6 5 7 15 | pm2mp | |
43 | 41 42 | sylan2b | |
44 | 33 34 35 43 | syl12anc | |
45 | 38 | fveq1i | |
46 | 45 | fveq2i | |
47 | 46 | oveq2i | |
48 | 47 | mpteq2i | |
49 | 48 | oveq2i | |
50 | 49 | fveq2i | |
51 | 45 | oveq1i | |
52 | 51 | mpteq2i | |
53 | 52 | oveq2i | |
54 | 44 50 53 | 3eqtr4g | |
55 | 32 54 | eqtrd | |
56 | 25 | adantl | |
57 | 56 | oveq1d | |
58 | 57 | mpteq2dva | |
59 | 58 | oveq2d | |
60 | 23 55 59 | 3eqtrd | |