Metamath Proof Explorer


Theorem cpmidpmatlem1

Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a A=NMatR
cpmidgsum.b B=BaseA
cpmidgsum.p P=Poly1R
cpmidgsum.y Y=NMatP
cpmidgsum.x X=var1R
cpmidgsum.e ×˙=mulGrpP
cpmidgsum.m ·˙=Y
cpmidgsum.1 1˙=1Y
cpmidgsum.u U=algScP
cpmidgsum.c C=NCharPlyMatR
cpmidgsum.k K=CM
cpmidgsum.h H=K·˙1˙
cpmidgsumm2pm.o O=1A
cpmidgsumm2pm.m ˙=A
cpmidgsumm2pm.t T=NmatToPolyMatR
cpmidpmat.g G=k0coe1Kk˙O
Assertion cpmidpmatlem1 L0GL=coe1KL˙O

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A=NMatR
2 cpmidgsum.b B=BaseA
3 cpmidgsum.p P=Poly1R
4 cpmidgsum.y Y=NMatP
5 cpmidgsum.x X=var1R
6 cpmidgsum.e ×˙=mulGrpP
7 cpmidgsum.m ·˙=Y
8 cpmidgsum.1 1˙=1Y
9 cpmidgsum.u U=algScP
10 cpmidgsum.c C=NCharPlyMatR
11 cpmidgsum.k K=CM
12 cpmidgsum.h H=K·˙1˙
13 cpmidgsumm2pm.o O=1A
14 cpmidgsumm2pm.m ˙=A
15 cpmidgsumm2pm.t T=NmatToPolyMatR
16 cpmidpmat.g G=k0coe1Kk˙O
17 fveq2 k=Lcoe1Kk=coe1KL
18 17 oveq1d k=Lcoe1Kk˙O=coe1KL˙O
19 ovex coe1KL˙OV
20 18 16 19 fvmpt L0GL=coe1KL˙O