Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cpmidgsum.a | |- A = ( N Mat R ) | |
| cpmidgsum.b | |- B = ( Base ` A ) | ||
| cpmidgsum.p | |- P = ( Poly1 ` R ) | ||
| cpmidgsum.y | |- Y = ( N Mat P ) | ||
| cpmidgsum.x | |- X = ( var1 ` R ) | ||
| cpmidgsum.e | |- .^ = ( .g ` ( mulGrp ` P ) ) | ||
| cpmidgsum.m | |- .x. = ( .s ` Y ) | ||
| cpmidgsum.1 | |- .1. = ( 1r ` Y ) | ||
| cpmidgsum.u | |- U = ( algSc ` P ) | ||
| cpmidgsum.c | |- C = ( N CharPlyMat R ) | ||
| cpmidgsum.k | |- K = ( C ` M ) | ||
| cpmidgsum.h | |- H = ( K .x. .1. ) | ||
| cpmidgsumm2pm.o | |- O = ( 1r ` A ) | ||
| cpmidgsumm2pm.m | |- .* = ( .s ` A ) | ||
| cpmidgsumm2pm.t | |- T = ( N matToPolyMat R ) | ||
| cpmidpmat.g | |- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) | ||
| Assertion | cpmidpmatlem1 | |- ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cpmidgsum.a | |- A = ( N Mat R ) | |
| 2 | cpmidgsum.b | |- B = ( Base ` A ) | |
| 3 | cpmidgsum.p | |- P = ( Poly1 ` R ) | |
| 4 | cpmidgsum.y | |- Y = ( N Mat P ) | |
| 5 | cpmidgsum.x | |- X = ( var1 ` R ) | |
| 6 | cpmidgsum.e | |- .^ = ( .g ` ( mulGrp ` P ) ) | |
| 7 | cpmidgsum.m | |- .x. = ( .s ` Y ) | |
| 8 | cpmidgsum.1 | |- .1. = ( 1r ` Y ) | |
| 9 | cpmidgsum.u | |- U = ( algSc ` P ) | |
| 10 | cpmidgsum.c | |- C = ( N CharPlyMat R ) | |
| 11 | cpmidgsum.k | |- K = ( C ` M ) | |
| 12 | cpmidgsum.h | |- H = ( K .x. .1. ) | |
| 13 | cpmidgsumm2pm.o | |- O = ( 1r ` A ) | |
| 14 | cpmidgsumm2pm.m | |- .* = ( .s ` A ) | |
| 15 | cpmidgsumm2pm.t | |- T = ( N matToPolyMat R ) | |
| 16 | cpmidpmat.g | |- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) | |
| 17 | fveq2 | |- ( k = L -> ( ( coe1 ` K ) ` k ) = ( ( coe1 ` K ) ` L ) ) | |
| 18 | 17 | oveq1d | |- ( k = L -> ( ( ( coe1 ` K ) ` k ) .* O ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) | 
| 19 | ovex | |- ( ( ( coe1 ` K ) ` L ) .* O ) e. _V | |
| 20 | 18 16 19 | fvmpt | |- ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) ) |