Metamath Proof Explorer


Theorem cpmidpmatlem1

Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a
|- A = ( N Mat R )
cpmidgsum.b
|- B = ( Base ` A )
cpmidgsum.p
|- P = ( Poly1 ` R )
cpmidgsum.y
|- Y = ( N Mat P )
cpmidgsum.x
|- X = ( var1 ` R )
cpmidgsum.e
|- .^ = ( .g ` ( mulGrp ` P ) )
cpmidgsum.m
|- .x. = ( .s ` Y )
cpmidgsum.1
|- .1. = ( 1r ` Y )
cpmidgsum.u
|- U = ( algSc ` P )
cpmidgsum.c
|- C = ( N CharPlyMat R )
cpmidgsum.k
|- K = ( C ` M )
cpmidgsum.h
|- H = ( K .x. .1. )
cpmidgsumm2pm.o
|- O = ( 1r ` A )
cpmidgsumm2pm.m
|- .* = ( .s ` A )
cpmidgsumm2pm.t
|- T = ( N matToPolyMat R )
cpmidpmat.g
|- G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) )
Assertion cpmidpmatlem1
|- ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) )

Proof

Step Hyp Ref Expression
1 cpmidgsum.a
 |-  A = ( N Mat R )
2 cpmidgsum.b
 |-  B = ( Base ` A )
3 cpmidgsum.p
 |-  P = ( Poly1 ` R )
4 cpmidgsum.y
 |-  Y = ( N Mat P )
5 cpmidgsum.x
 |-  X = ( var1 ` R )
6 cpmidgsum.e
 |-  .^ = ( .g ` ( mulGrp ` P ) )
7 cpmidgsum.m
 |-  .x. = ( .s ` Y )
8 cpmidgsum.1
 |-  .1. = ( 1r ` Y )
9 cpmidgsum.u
 |-  U = ( algSc ` P )
10 cpmidgsum.c
 |-  C = ( N CharPlyMat R )
11 cpmidgsum.k
 |-  K = ( C ` M )
12 cpmidgsum.h
 |-  H = ( K .x. .1. )
13 cpmidgsumm2pm.o
 |-  O = ( 1r ` A )
14 cpmidgsumm2pm.m
 |-  .* = ( .s ` A )
15 cpmidgsumm2pm.t
 |-  T = ( N matToPolyMat R )
16 cpmidpmat.g
 |-  G = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) )
17 fveq2
 |-  ( k = L -> ( ( coe1 ` K ) ` k ) = ( ( coe1 ` K ) ` L ) )
18 17 oveq1d
 |-  ( k = L -> ( ( ( coe1 ` K ) ` k ) .* O ) = ( ( ( coe1 ` K ) ` L ) .* O ) )
19 ovex
 |-  ( ( ( coe1 ` K ) ` L ) .* O ) e. _V
20 18 16 19 fvmpt
 |-  ( L e. NN0 -> ( G ` L ) = ( ( ( coe1 ` K ) ` L ) .* O ) )