| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cpmidgsum.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cpmidgsum.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cpmidgsum.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cpmidgsum.x |  |-  X = ( var1 ` R ) | 
						
							| 6 |  | cpmidgsum.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 7 |  | cpmidgsum.m |  |-  .x. = ( .s ` Y ) | 
						
							| 8 |  | cpmidgsum.1 |  |-  .1. = ( 1r ` Y ) | 
						
							| 9 |  | cpmidgsum.u |  |-  U = ( algSc ` P ) | 
						
							| 10 |  | cpmidgsum.c |  |-  C = ( N CharPlyMat R ) | 
						
							| 11 |  | cpmidgsum.k |  |-  K = ( C ` M ) | 
						
							| 12 |  | cpmidgsum.h |  |-  H = ( K .x. .1. ) | 
						
							| 13 |  | cpmidgsumm2pm.o |  |-  O = ( 1r ` A ) | 
						
							| 14 |  | cpmidgsumm2pm.m |  |-  .* = ( .s ` A ) | 
						
							| 15 |  | cpmidgsumm2pm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 16 |  | cpmidgsum.w |  |-  W = ( Base ` Y ) | 
						
							| 17 |  | cpmidpmat.p |  |-  Q = ( Poly1 ` A ) | 
						
							| 18 |  | cpmidpmat.z |  |-  Z = ( var1 ` A ) | 
						
							| 19 |  | cpmidpmat.m |  |-  .xb = ( .s ` Q ) | 
						
							| 20 |  | cpmidpmat.e |  |-  E = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 21 |  | cpmidpmat.i |  |-  I = ( N pMatToMatPoly R ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | cpmidgsumm2pm |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> H = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` H ) = ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) = ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem1 |  |-  ( n e. NN0 -> ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) = ( ( ( coe1 ` K ) ` n ) .* O ) ) | 
						
							| 26 | 25 | eqcomd |  |-  ( n e. NN0 -> ( ( ( coe1 ` K ) ` n ) .* O ) = ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( ( coe1 ` K ) ` n ) .* O ) = ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) = ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) = ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) | 
						
							| 30 | 29 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) = ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) ) ) | 
						
							| 33 |  | 3simpa |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( N e. Fin /\ R e. CRing ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) e. ( B ^m NN0 ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) finSupp ( 0g ` A ) ) | 
						
							| 36 |  | fveq2 |  |-  ( k = x -> ( ( coe1 ` K ) ` k ) = ( ( coe1 ` K ) ` x ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( k = x -> ( ( ( coe1 ` K ) ` k ) .* O ) = ( ( ( coe1 ` K ) ` x ) .* O ) ) | 
						
							| 38 | 37 | cbvmptv |  |-  ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) = ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) | 
						
							| 39 | 38 | eleq1i |  |-  ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) e. ( B ^m NN0 ) <-> ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) e. ( B ^m NN0 ) ) | 
						
							| 40 | 38 | breq1i |  |-  ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) finSupp ( 0g ` A ) <-> ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) finSupp ( 0g ` A ) ) | 
						
							| 41 | 39 40 | anbi12i |  |-  ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) e. ( B ^m NN0 ) /\ ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) finSupp ( 0g ` A ) ) <-> ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) e. ( B ^m NN0 ) /\ ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) finSupp ( 0g ` A ) ) ) | 
						
							| 42 | 3 4 16 19 20 18 1 2 17 21 6 5 7 15 | pm2mp |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) e. ( B ^m NN0 ) /\ ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) finSupp ( 0g ` A ) ) ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) ) | 
						
							| 43 | 41 42 | sylan2b |  |-  ( ( ( N e. Fin /\ R e. CRing ) /\ ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) e. ( B ^m NN0 ) /\ ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) finSupp ( 0g ` A ) ) ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) ) | 
						
							| 44 | 33 34 35 43 | syl12anc |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) ) | 
						
							| 45 | 38 | fveq1i |  |-  ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) = ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) | 
						
							| 46 | 45 | fveq2i |  |-  ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) = ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) | 
						
							| 47 | 46 | oveq2i |  |-  ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) = ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) | 
						
							| 48 | 47 | mpteq2i |  |-  ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) = ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) | 
						
							| 49 | 48 | oveq2i |  |-  ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) = ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) ) | 
						
							| 50 | 49 | fveq2i |  |-  ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) ) = ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) ) ) ) ) ) | 
						
							| 51 | 45 | oveq1i |  |-  ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) = ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) | 
						
							| 52 | 51 | mpteq2i |  |-  ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) = ( n e. NN0 |-> ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) ) | 
						
							| 53 | 52 | oveq2i |  |-  ( Q gsum ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( x e. NN0 |-> ( ( ( coe1 ` K ) ` x ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) | 
						
							| 54 | 44 50 53 | 3eqtr4g |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) ) | 
						
							| 55 | 32 54 | eqtrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` ( Y gsum ( n e. NN0 |-> ( ( n .^ X ) .x. ( T ` ( ( ( coe1 ` K ) ` n ) .* O ) ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) ) | 
						
							| 56 | 25 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) = ( ( ( coe1 ` K ) ` n ) .* O ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ n e. NN0 ) -> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) = ( ( ( ( coe1 ` K ) ` n ) .* O ) .xb ( n E Z ) ) ) | 
						
							| 58 | 57 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) = ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* O ) .xb ( n E Z ) ) ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( Q gsum ( n e. NN0 |-> ( ( ( k e. NN0 |-> ( ( ( coe1 ` K ) ` k ) .* O ) ) ` n ) .xb ( n E Z ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* O ) .xb ( n E Z ) ) ) ) ) | 
						
							| 60 | 23 55 59 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( I ` H ) = ( Q gsum ( n e. NN0 |-> ( ( ( ( coe1 ` K ) ` n ) .* O ) .xb ( n E Z ) ) ) ) ) |