| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmidgsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmidgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmidgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmidgsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmidgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | cpmidgsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 7 |  | cpmidgsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 8 |  | cpmidgsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 9 |  | cpmidgsum.u | ⊢ 𝑈  =  ( algSc ‘ 𝑃 ) | 
						
							| 10 |  | cpmidgsum.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 11 |  | cpmidgsum.k | ⊢ 𝐾  =  ( 𝐶 ‘ 𝑀 ) | 
						
							| 12 |  | cpmidgsum.h | ⊢ 𝐻  =  ( 𝐾  ·   1  ) | 
						
							| 13 |  | cpmidgsumm2pm.o | ⊢ 𝑂  =  ( 1r ‘ 𝐴 ) | 
						
							| 14 |  | cpmidgsumm2pm.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 15 |  | cpmidgsumm2pm.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 16 |  | cpmidgsum.w | ⊢ 𝑊  =  ( Base ‘ 𝑌 ) | 
						
							| 17 |  | cpmidpmat.p | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 18 |  | cpmidpmat.z | ⊢ 𝑍  =  ( var1 ‘ 𝐴 ) | 
						
							| 19 |  | cpmidpmat.m | ⊢  ∙   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 20 |  | cpmidpmat.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 21 |  | cpmidpmat.i | ⊢ 𝐼  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | cpmidgsumm2pm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐻  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ 𝐻 )  =  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem1 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) )  =  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 30 | 29 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) )  =  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 33 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 | cpmidpmatlem3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝑘  =  𝑥  →  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) | 
						
							| 38 | 37 | cbvmptv | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  =  ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) | 
						
							| 39 | 38 | eleq1i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 )  ↔  ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 ) ) | 
						
							| 40 | 38 | breq1i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 )  ↔  ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 41 | 39 40 | anbi12i | ⊢ ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) )  ↔  ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 42 | 3 4 16 19 20 18 1 2 17 21 6 5 7 15 | pm2mp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 43 | 41 42 | sylan2b | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  ∈  ( 𝐵  ↑m  ℕ0 )  ∧  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) )  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 44 | 33 34 35 43 | syl12anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 45 | 38 | fveq1i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  =  ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) | 
						
							| 46 | 45 | fveq2i | ⊢ ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) | 
						
							| 47 | 46 | oveq2i | ⊢ ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) )  =  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) | 
						
							| 48 | 47 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 49 | 48 | oveq2i | ⊢ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 50 | 49 | fveq2i | ⊢ ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 51 | 45 | oveq1i | ⊢ ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) )  =  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) | 
						
							| 52 | 51 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) | 
						
							| 53 | 52 | oveq2i | ⊢ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑥  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑥 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) | 
						
							| 54 | 44 50 53 | 3eqtr4g | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 55 | 32 54 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝑌  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 56 | 25 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  =  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) )  =  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) | 
						
							| 58 | 57 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑘 )  ∗  𝑂 ) ) ‘ 𝑛 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) | 
						
							| 60 | 23 55 59 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐼 ‘ 𝐻 )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 )  ∗  𝑂 )  ∙  ( 𝑛 𝐸 𝑍 ) ) ) ) ) |