| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cpmadugsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cpmadugsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cpmadugsum.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | cpmadugsum.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | cpmadugsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | cpmadugsum.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | cpmadugsum.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | cpmadugsum.r | ⊢  ×   =  ( .r ‘ 𝑌 ) | 
						
							| 10 |  | cpmadugsum.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 11 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 12 | 3 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 15 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 16 | 15 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 19 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑖  ∈  ℕ0 ) | 
						
							| 21 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 22 | 21 | a1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  1  ∈  ℕ0 ) | 
						
							| 23 | 11 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 25 | 6 3 24 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 28 | 15 24 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 29 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 30 | 15 29 | mgpplusg | ⊢ ( .r ‘ 𝑃 )  =  ( +g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 31 | 28 7 30 | mulgnn0dir | ⊢ ( ( ( mulGrp ‘ 𝑃 )  ∈  Mnd  ∧  ( 𝑖  ∈  ℕ0  ∧  1  ∈  ℕ0  ∧  𝑋  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ( 𝑖  +  1 )  ↑  𝑋 )  =  ( ( 𝑖  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 1  ↑  𝑋 ) ) ) | 
						
							| 32 | 18 20 22 27 31 | syl13anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  +  1 )  ↑  𝑋 )  =  ( ( 𝑖  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 1  ↑  𝑋 ) ) ) | 
						
							| 33 | 3 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 34 | 33 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing ) ) | 
						
							| 36 | 4 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( .r ‘ 𝑃 )  =  ( .r ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 40 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖  ↑  𝑋 )  =  ( 𝑖  ↑  𝑋 ) ) | 
						
							| 41 | 28 7 | mulg1 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝑃 )  →  ( 1  ↑  𝑋 )  =  𝑋 ) | 
						
							| 42 | 26 41 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 1  ↑  𝑋 )  =  𝑋 ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 1  ↑  𝑋 )  =  𝑋 ) | 
						
							| 44 | 39 40 43 | oveq123d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 ) ( .r ‘ 𝑃 ) ( 1  ↑  𝑋 ) )  =  ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) | 
						
							| 45 | 32 44 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  +  1 )  ↑  𝑋 )  =  ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) | 
						
							| 46 | 13 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 47 | 46 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 48 | 4 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 50 | 49 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑌  ∈  Ring ) | 
						
							| 51 |  | simpll1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑁  ∈  Fin ) | 
						
							| 52 | 23 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑅  ∈  Ring ) | 
						
							| 53 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 54 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 55 | 54 | anim1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 56 | 1 2 3 4 5 | m2pmfzmap | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 57 | 51 52 53 55 56 | syl31anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 59 | 58 9 10 | ringlidm | ⊢ ( ( 𝑌  ∈  Ring  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) )  →  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 60 | 50 57 59 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  =  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 62 | 45 61 | oveq12d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( ( 𝑖  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 )  ·  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 63 | 4 | matassa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑌  ∈  AssAlg ) | 
						
							| 64 | 34 63 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  AssAlg ) | 
						
							| 65 | 64 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  AssAlg ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑌  ∈  AssAlg ) | 
						
							| 67 | 37 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑌 )  =  𝑃 ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 69 | 26 68 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 71 | 28 7 18 20 27 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 72 | 68 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 73 | 71 72 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 74 | 46 48 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 75 | 74 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  Ring ) | 
						
							| 76 | 58 10 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 78 | 77 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 79 |  | eqid | ⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 ) | 
						
							| 80 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 81 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑌 ) )  =  ( .r ‘ ( Scalar ‘ 𝑌 ) ) | 
						
							| 82 | 58 79 80 81 8 9 | assa2ass | ⊢ ( ( 𝑌  ∈  AssAlg  ∧  ( 𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) )  ∧  (  1   ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 )  ·  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 83 | 66 70 73 78 57 82 | syl122anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 )  ·  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( ( 𝑖  ↑  𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 )  ·  (  1   ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 85 | 62 84 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( ( 𝑖  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  =  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) | 
						
							| 86 | 85 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( ( 𝑖  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( ( 𝑖  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 89 | 75 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  Ring ) | 
						
							| 90 |  | ovexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0 ... 𝑠 )  ∈  V ) | 
						
							| 91 | 4 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑌  ∈  LMod ) | 
						
							| 92 | 46 91 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod ) | 
						
							| 93 | 92 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  LMod ) | 
						
							| 94 | 11 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 95 | 94 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 96 | 34 36 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 97 | 96 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Scalar ‘ 𝑌 )  =  𝑃 ) | 
						
							| 98 | 97 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 99 | 95 98 | eleqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 100 | 99 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 101 | 49 76 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →   1   ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 102 | 58 79 8 80 | lmodvscl | ⊢ ( ( 𝑌  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧   1   ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 103 | 93 100 101 102 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 105 | 93 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑌  ∈  LMod ) | 
						
							| 106 | 36 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  ( Scalar ‘ 𝑌 )  =  𝑃 ) | 
						
							| 107 | 106 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 108 | 35 107 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 109 | 108 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ↔  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 110 | 109 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ↔  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 111 | 71 110 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) | 
						
							| 112 | 58 79 8 80 | lmodvscl | ⊢ ( ( 𝑌  ∈  LMod  ∧  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 113 | 105 111 57 112 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 114 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 115 | 23 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 116 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 117 |  | eqid | ⊢ ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) | 
						
							| 118 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0 ... 𝑠 )  ∈  Fin ) | 
						
							| 119 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  V ) | 
						
							| 120 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0g ‘ 𝑌 )  ∈  V ) | 
						
							| 121 | 117 118 119 120 | fsuppmptdm | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 122 | 114 115 116 54 121 | syl31anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  finSupp  ( 0g ‘ 𝑌 ) ) | 
						
							| 123 | 58 88 9 89 90 104 113 122 | gsummulc2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑋  ·   1  )  ×  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 124 | 87 123 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( ( 𝑖  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |