Step |
Hyp |
Ref |
Expression |
1 |
|
m2pmfzmap.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
m2pmfzmap.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
m2pmfzmap.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
m2pmfzmap.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
m2pmfzmap.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → 𝑁 ∈ Fin ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → 𝑅 ∈ Ring ) |
8 |
|
elmapi |
⊢ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) → 𝑏 : ( 0 ... 𝑆 ) ⟶ 𝐵 ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) → ( 𝑏 ‘ 𝐼 ) ∈ 𝐵 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → ( 𝑏 ‘ 𝐼 ) ∈ 𝐵 ) |
11 |
5 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏 ‘ 𝐼 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝐼 ) ) ∈ ( Base ‘ 𝑌 ) ) |
12 |
6 7 10 11
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝐼 ) ) ∈ ( Base ‘ 𝑌 ) ) |