Metamath Proof Explorer


Theorem m2pmfzmap

Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a 𝐴 = ( 𝑁 Mat 𝑅 )
m2pmfzmap.b 𝐵 = ( Base ‘ 𝐴 )
m2pmfzmap.p 𝑃 = ( Poly1𝑅 )
m2pmfzmap.y 𝑌 = ( 𝑁 Mat 𝑃 )
m2pmfzmap.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
Assertion m2pmfzmap ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → ( 𝑇 ‘ ( 𝑏𝐼 ) ) ∈ ( Base ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 m2pmfzmap.b 𝐵 = ( Base ‘ 𝐴 )
3 m2pmfzmap.p 𝑃 = ( Poly1𝑅 )
4 m2pmfzmap.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 m2pmfzmap.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 simpl1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → 𝑁 ∈ Fin )
7 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → 𝑅 ∈ Ring )
8 elmapi ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) → 𝑏 : ( 0 ... 𝑆 ) ⟶ 𝐵 )
9 8 ffvelrnda ( ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) → ( 𝑏𝐼 ) ∈ 𝐵 )
10 9 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → ( 𝑏𝐼 ) ∈ 𝐵 )
11 5 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑏𝐼 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 𝑏𝐼 ) ) ∈ ( Base ‘ 𝑌 ) )
12 6 7 10 11 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑆 ) ) ∧ 𝐼 ∈ ( 0 ... 𝑆 ) ) ) → ( 𝑇 ‘ ( 𝑏𝐼 ) ) ∈ ( Base ‘ 𝑌 ) )