| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2pmfzmap.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | m2pmfzmap.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | m2pmfzmap.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | m2pmfzmap.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | m2pmfzmap.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑆  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  ∧  𝐼  ∈  ( 0 ... 𝑆 ) ) )  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑆  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  ∧  𝐼  ∈  ( 0 ... 𝑆 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  →  𝑏 : ( 0 ... 𝑆 ) ⟶ 𝐵 ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  ∧  𝐼  ∈  ( 0 ... 𝑆 ) )  →  ( 𝑏 ‘ 𝐼 )  ∈  𝐵 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑆  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  ∧  𝐼  ∈  ( 0 ... 𝑆 ) ) )  →  ( 𝑏 ‘ 𝐼 )  ∈  𝐵 ) | 
						
							| 11 | 5 1 2 3 4 | mat2pmatbas | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑏 ‘ 𝐼 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝐼 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 12 | 6 7 10 11 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑆  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑆 ) )  ∧  𝐼  ∈  ( 0 ... 𝑆 ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝐼 ) )  ∈  ( Base ‘ 𝑌 ) ) |