Metamath Proof Explorer


Theorem m2pmfzmap

Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a A=NMatR
m2pmfzmap.b B=BaseA
m2pmfzmap.p P=Poly1R
m2pmfzmap.y Y=NMatP
m2pmfzmap.t T=NmatToPolyMatR
Assertion m2pmfzmap NFinRRingS0bB0SI0STbIBaseY

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a A=NMatR
2 m2pmfzmap.b B=BaseA
3 m2pmfzmap.p P=Poly1R
4 m2pmfzmap.y Y=NMatP
5 m2pmfzmap.t T=NmatToPolyMatR
6 simpl1 NFinRRingS0bB0SI0SNFin
7 simpl2 NFinRRingS0bB0SI0SRRing
8 elmapi bB0Sb:0SB
9 8 ffvelcdmda bB0SI0SbIB
10 9 adantl NFinRRingS0bB0SI0SbIB
11 5 1 2 3 4 mat2pmatbas NFinRRingbIBTbIBaseY
12 6 7 10 11 syl3anc NFinRRingS0bB0SI0STbIBaseY