| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2pmfzmap.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | m2pmfzmap.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | m2pmfzmap.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | m2pmfzmap.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | m2pmfzmap.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> N e. Fin ) | 
						
							| 7 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> R e. Ring ) | 
						
							| 8 |  | elmapi |  |-  ( b e. ( B ^m ( 0 ... S ) ) -> b : ( 0 ... S ) --> B ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) -> ( b ` I ) e. B ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( b ` I ) e. B ) | 
						
							| 11 | 5 1 2 3 4 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ ( b ` I ) e. B ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) ) | 
						
							| 12 | 6 7 10 11 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) ) |