| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2pmfzmap.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | m2pmfzmap.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | m2pmfzmap.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | m2pmfzmap.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 5 |  | m2pmfzmap.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 6 |  | m2pmfzmapfsupp.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | m2pmfzmapfsupp.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 8 |  | m2pmfzgsumcl.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 10 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 3 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 13 | 4 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 15 |  | ringcmn | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  CMnd ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  CMnd ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  CMnd ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑌  ∈  CMnd ) | 
						
							| 19 |  | fzfid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 0 ... 𝑠 )  ∈  Fin ) | 
						
							| 20 |  | simpll1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑁  ∈  Fin ) | 
						
							| 21 | 12 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑃  ∈  Ring ) | 
						
							| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  𝑃  ∈  Ring ) | 
						
							| 23 | 10 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 25 |  | elfznn0 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑠 )  →  𝑖  ∈  ℕ0 ) | 
						
							| 26 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 28 | 3 6 26 7 27 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ℕ0 )  →  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 29 | 24 25 28 | syl2an | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 30 | 10 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 31 | 30 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑠  ∈  ℕ0 ) | 
						
							| 33 | 31 32 | anim12i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 34 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 ) ) | 
						
							| 36 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) | 
						
							| 37 | 36 | anim1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 38 | 1 2 3 4 5 | m2pmfzmap | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 39 | 35 37 38 | syl2an2r | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 40 | 27 4 9 8 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝑖  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) )  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 41 | 20 22 29 39 40 | syl22anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 42 | 41 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝑠 ) ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 43 | 9 18 19 42 | gsummptcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  ∈  ( Base ‘ 𝑌 ) ) |