| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monmat2matmon.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | monmat2matmon.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | monmat2matmon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | monmat2matmon.m1 | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | monmat2matmon.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | monmat2matmon.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | monmat2matmon.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | monmat2matmon.k | ⊢ 𝐾  =  ( Base ‘ 𝐴 ) | 
						
							| 9 |  | monmat2matmon.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 10 |  | monmat2matmon.i | ⊢ 𝐼  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 11 |  | monmat2matmon.e2 | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 12 |  | monmat2matmon.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 13 |  | monmat2matmon.m2 | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 14 |  | monmat2matmon.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 16 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 17 | 16 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 18 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 19 |  | ringcmn | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  CMnd ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐶  ∈  CMnd ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  𝐶  ∈  CMnd ) | 
						
							| 22 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 23 | 16 22 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐴  ∈  Ring ) | 
						
							| 24 | 9 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 25 |  | ringmnd | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  Mnd ) | 
						
							| 26 | 23 24 25 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑄  ∈  Mnd ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  𝑄  ∈  Mnd ) | 
						
							| 28 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ℕ0  ∈  V ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 31 | 1 2 3 4 5 6 7 9 30 10 | pm2mpghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐼  ∈  ( 𝐶  GrpHom  𝑄 ) ) | 
						
							| 32 | 16 31 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐼  ∈  ( 𝐶  GrpHom  𝑄 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  𝐼  ∈  ( 𝐶  GrpHom  𝑄 ) ) | 
						
							| 34 |  | ghmmhm | ⊢ ( 𝐼  ∈  ( 𝐶  GrpHom  𝑄 )  →  𝐼  ∈  ( 𝐶  MndHom  𝑄 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  𝐼  ∈  ( 𝐶  MndHom  𝑄 ) ) | 
						
							| 36 | 17 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 38 |  | elmapi | ⊢ ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  →  𝑀 : ℕ0 ⟶ 𝐾 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) )  →  𝑀 : ℕ0 ⟶ 𝐾 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  𝑀 : ℕ0 ⟶ 𝐾 ) | 
						
							| 41 | 40 | ffvelcdmda | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀 ‘ 𝑛 )  ∈  𝐾 ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 43 | 7 8 14 1 2 3 13 11 12 | mat2pmatscmxcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝑀 ‘ 𝑛 )  ∈  𝐾  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 44 | 37 41 42 43 | syl12anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  ∈  𝐵 ) | 
						
							| 45 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 0g ‘ 𝐶 )  ∈  V ) | 
						
							| 46 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  ∈  V ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  →  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) ) | 
						
							| 48 |  | fvex | ⊢ ( 0g ‘ 𝐴 )  ∈  V | 
						
							| 49 |  | fsuppmapnn0ub | ⊢ ( ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  ( 0g ‘ 𝐴 )  ∈  V )  →  ( 𝑀  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 50 | 47 48 49 | sylancl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  →  ( 𝑀  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 51 |  | csbov12g | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝑛 𝐸 𝑌 )  ·  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) | 
						
							| 52 |  | csbov1g | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑛 𝐸 𝑌 )  =  ( ⦋ 𝑥  /  𝑛 ⦌ 𝑛 𝐸 𝑌 ) ) | 
						
							| 53 |  | csbvarg | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ 𝑛  =  𝑥 ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝑥  ∈  ℕ0  →  ( ⦋ 𝑥  /  𝑛 ⦌ 𝑛 𝐸 𝑌 )  =  ( 𝑥 𝐸 𝑌 ) ) | 
						
							| 55 | 52 54 | eqtrd | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑛 𝐸 𝑌 )  =  ( 𝑥 𝐸 𝑌 ) ) | 
						
							| 56 |  | csbfv2g | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ⦋ 𝑥  /  𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) ) ) | 
						
							| 57 |  | csbfv2g | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑀 ‘ 𝑛 )  =  ( 𝑀 ‘ ⦋ 𝑥  /  𝑛 ⦌ 𝑛 ) ) | 
						
							| 58 | 53 | fveq2d | ⊢ ( 𝑥  ∈  ℕ0  →  ( 𝑀 ‘ ⦋ 𝑥  /  𝑛 ⦌ 𝑛 )  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 59 | 57 58 | eqtrd | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑀 ‘ 𝑛 )  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( 𝑥  ∈  ℕ0  →  ( 𝑇 ‘ ⦋ 𝑥  /  𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 61 | 56 60 | eqtrd | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 62 | 55 61 | oveq12d | ⊢ ( 𝑥  ∈  ℕ0  →  ( ⦋ 𝑥  /  𝑛 ⦌ ( 𝑛 𝐸 𝑌 )  ·  ⦋ 𝑥  /  𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 63 | 51 62 | eqtrd | ⊢ ( 𝑥  ∈  ℕ0  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) )  =  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) | 
						
							| 67 | 66 | oveq2d | ⊢ ( ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 68 | 14 7 8 1 2 3 | mat2pmatghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐴  GrpHom  𝐶 ) ) | 
						
							| 69 | 16 68 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑇  ∈  ( 𝐴  GrpHom  𝐶 ) ) | 
						
							| 70 | 69 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  𝑇  ∈  ( 𝐴  GrpHom  𝐶 ) ) | 
						
							| 71 |  | ghmmhm | ⊢ ( 𝑇  ∈  ( 𝐴  GrpHom  𝐶 )  →  𝑇  ∈  ( 𝐴  MndHom  𝐶 ) ) | 
						
							| 72 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 73 | 72 15 | mhm0 | ⊢ ( 𝑇  ∈  ( 𝐴  MndHom  𝐶 )  →  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 74 | 70 71 73 | 3syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) )  =  ( ( 𝑥 𝐸 𝑌 )  ·  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 76 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 77 | 16 76 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 78 | 2 | matlmod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  𝐶  ∈  LMod ) | 
						
							| 79 | 77 78 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝐶  ∈  LMod ) | 
						
							| 80 | 79 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  𝐶  ∈  LMod ) | 
						
							| 81 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 82 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 83 | 81 82 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 84 | 77 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  Ring ) | 
						
							| 85 | 81 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 87 | 86 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd ) | 
						
							| 88 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 89 | 16 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring ) | 
						
							| 90 | 12 1 82 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 91 | 89 90 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 92 | 91 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  𝑌  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 93 | 83 11 87 88 92 | mulgnn0cld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 94 | 1 | ply1crng | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing ) | 
						
							| 95 | 2 | matsca2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 96 | 94 95 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝐶 ) ) | 
						
							| 97 | 96 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Scalar ‘ 𝐶 )  =  𝑃 ) | 
						
							| 98 | 97 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( Scalar ‘ 𝐶 )  =  𝑃 ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 100 | 93 99 | eleqtrrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 101 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 102 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 103 | 101 13 102 15 | lmodvs0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 104 | 80 100 103 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 0g ‘ 𝐶 ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 105 | 75 104 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 106 | 67 105 | sylan9eqr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑥 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 107 | 65 106 | eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) | 
						
							| 108 | 107 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 109 | 108 | imim2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑦  <  𝑥  →  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑦  <  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 110 | 109 | ralimdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 111 | 110 | reximdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ( 𝑀 ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 112 | 50 111 | syld | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  𝑀  ∈  ( 𝐾  ↑m  ℕ0 ) )  →  ( 𝑀  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) ) | 
						
							| 113 | 112 | impr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑦  <  𝑥  →  ⦋ 𝑥  /  𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) )  =  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 114 | 45 46 113 | mptnn0fsupp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) )  finSupp  ( 0g ‘ 𝐶 ) ) | 
						
							| 115 | 3 15 21 27 29 35 44 114 | gsummptmhm | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝐼 ‘ ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 116 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 117 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | monmat2matmon | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( ( 𝑀 ‘ 𝑛 )  ∈  𝐾  ∧  𝑛  ∈  ℕ0 ) )  →  ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) )  =  ( ( 𝑀 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 118 | 116 41 42 117 | syl12anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) )  =  ( ( 𝑀 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 119 | 118 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑀 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑀 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) | 
						
							| 121 | 115 120 | eqtr3d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  ( 𝐾  ↑m  ℕ0 )  ∧  𝑀  finSupp  ( 0g ‘ 𝐴 ) ) )  →  ( 𝐼 ‘ ( 𝐶  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑛 𝐸 𝑌 )  ·  ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑀 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) ) ) |