| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monmat2matmon.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | monmat2matmon.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | monmat2matmon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | monmat2matmon.m1 | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | monmat2matmon.e1 | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | monmat2matmon.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | monmat2matmon.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | monmat2matmon.k | ⊢ 𝐾  =  ( Base ‘ 𝐴 ) | 
						
							| 9 |  | monmat2matmon.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 10 |  | monmat2matmon.i | ⊢ 𝐼  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 11 |  | monmat2matmon.e2 | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 12 |  | monmat2matmon.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 13 |  | monmat2matmon.m2 | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 14 |  | monmat2matmon.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 15 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑁  ∈  Fin ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑅  ∈  Ring ) | 
						
							| 18 | 7 8 14 1 2 3 13 11 12 | mat2pmatscmxcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  ∈  𝐵 ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 10 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  ∈  𝐵 )  →  ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 21 | 15 20 | sylanl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 24 | 23 | anim1i | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 25 |  | df-3an | ⊢ ( ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 )  ↔  ( ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 )  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 28 | 1 2 7 8 27 11 12 13 14 | monmatcollpw | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0  ∧  𝑘  ∈  ℕ0 ) )  →  ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  =  if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 29 | 22 26 28 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  =  if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 31 | 15 | a1i | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) ) | 
						
							| 32 | 31 | anim2d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) ) | 
						
							| 33 | 32 | anim1d | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) ) ) ) | 
						
							| 34 | 33 | imdistanri | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 ) ) | 
						
							| 35 |  | ovif | ⊢ ( if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 36 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 37 | 9 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 0g ‘ 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 42 | 9 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 43 | 36 42 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 44 | 43 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑄  ∈  LMod ) | 
						
							| 45 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 47 | 45 46 | mgpbas | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 48 | 9 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 49 | 36 48 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 50 | 45 | ringmgp | ⊢ ( 𝑄  ∈  Ring  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 52 | 51 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 53 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 54 | 6 9 46 | vr1cl | ⊢ ( 𝐴  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 55 | 36 54 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 57 | 47 5 52 53 56 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 58 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 59 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 60 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 61 | 46 58 4 59 60 | lmod0vs | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 62 | 44 57 61 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 63 | 41 62 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 64 | 63 | ifeq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 65 | 35 64 | eqtrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 66 | 34 65 | syl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑘  =  𝐿 ,  𝑀 ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 67 | 30 66 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 68 | 67 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) ) ) | 
						
							| 70 |  | ringmnd | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  Mnd ) | 
						
							| 71 | 49 70 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Mnd ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑄  ∈  Mnd ) | 
						
							| 73 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 74 | 73 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ℕ0  ∈  V ) | 
						
							| 75 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 77 | 38 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Base ‘ 𝐴 )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 78 | 8 77 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐾  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 79 | 78 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑀  ∈  𝐾  ↔  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) | 
						
							| 80 | 79 | biimpcd | ⊢ ( 𝑀  ∈  𝐾  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) | 
						
							| 82 | 81 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 84 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 85 | 46 58 4 84 | lmodvscl | ⊢ ( ( 𝑄  ∈  LMod  ∧  𝑀  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) )  →  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 86 | 44 83 57 85 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 87 | 86 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 88 | 60 72 74 75 76 87 | gsummpt1n0 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) )  =  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 89 | 15 88 | sylanl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  𝐿 ,  ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( 0g ‘ 𝑄 ) ) ) )  =  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 90 | 69 89 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 91 |  | csbov2g | ⊢ ( 𝐿  ∈  ℕ0  →  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑀  ∗  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 92 |  | csbov1g | ⊢ ( 𝐿  ∈  ℕ0  →  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( ⦋ 𝐿  /  𝑘 ⦌ 𝑘  ↑  𝑋 ) ) | 
						
							| 93 |  | csbvarg | ⊢ ( 𝐿  ∈  ℕ0  →  ⦋ 𝐿  /  𝑘 ⦌ 𝑘  =  𝐿 ) | 
						
							| 94 | 93 | oveq1d | ⊢ ( 𝐿  ∈  ℕ0  →  ( ⦋ 𝐿  /  𝑘 ⦌ 𝑘  ↑  𝑋 )  =  ( 𝐿  ↑  𝑋 ) ) | 
						
							| 95 | 92 94 | eqtrd | ⊢ ( 𝐿  ∈  ℕ0  →  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( 𝐿  ↑  𝑋 ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝐿  ∈  ℕ0  →  ( 𝑀  ∗  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 ) )  =  ( 𝑀  ∗  ( 𝐿  ↑  𝑋 ) ) ) | 
						
							| 97 | 91 96 | eqtrd | ⊢ ( 𝐿  ∈  ℕ0  →  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑀  ∗  ( 𝐿  ↑  𝑋 ) ) ) | 
						
							| 98 | 97 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ⦋ 𝐿  /  𝑘 ⦌ ( 𝑀  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑀  ∗  ( 𝐿  ↑  𝑋 ) ) ) | 
						
							| 99 | 21 90 98 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 )  ·  ( 𝑇 ‘ 𝑀 ) ) )  =  ( 𝑀  ∗  ( 𝐿  ↑  𝑋 ) ) ) |