| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpval.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpval.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpval.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpval.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpval.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpval.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | pm2mpval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑇  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  𝑇  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝑘 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝑚  =  𝑀  →  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 14 | 13 | mpteq2dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑚  =  𝑀  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  ∧  𝑚  =  𝑀 )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 18 |  | ovexd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  ∈  V ) | 
						
							| 19 | 11 16 17 18 | fvmptd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) |