Metamath Proof Explorer


Theorem pm2mpfval

Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
Assertion pm2mpfval NFinRVMBTM=Qk0MdecompPMatk˙k×˙X

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 1 2 3 4 5 6 7 8 9 pm2mpval NFinRVT=mBQk0mdecompPMatk˙k×˙X
11 10 3adant3 NFinRVMBT=mBQk0mdecompPMatk˙k×˙X
12 oveq1 m=MmdecompPMatk=MdecompPMatk
13 12 oveq1d m=MmdecompPMatk˙k×˙X=MdecompPMatk˙k×˙X
14 13 mpteq2dv m=Mk0mdecompPMatk˙k×˙X=k0MdecompPMatk˙k×˙X
15 14 oveq2d m=MQk0mdecompPMatk˙k×˙X=Qk0MdecompPMatk˙k×˙X
16 15 adantl NFinRVMBm=MQk0mdecompPMatk˙k×˙X=Qk0MdecompPMatk˙k×˙X
17 simp3 NFinRVMBMB
18 ovexd NFinRVMBQk0MdecompPMatk˙k×˙XV
19 11 16 17 18 fvmptd NFinRVMBTM=Qk0MdecompPMatk˙k×˙X