Metamath Proof Explorer


Definition df-decpmat

Description: Define the decomposition of polynomial matrices. This function collects the coefficients of a polynomial matrix m belong to the k th power of the polynomial variable for each entry of m . (Contributed by AV, 2-Dec-2019)

Ref Expression
Assertion df-decpmat decompPMat=mV,k0idomdomm,jdomdommcoe1imjk

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdecpmat classdecompPMat
1 vm setvarm
2 cvv classV
3 vk setvark
4 cn0 class0
5 vi setvari
6 1 cv setvarm
7 6 cdm classdomm
8 7 cdm classdomdomm
9 vj setvarj
10 cco1 classcoe1
11 5 cv setvari
12 9 cv setvarj
13 11 12 6 co classimj
14 13 10 cfv classcoe1imj
15 3 cv setvark
16 15 14 cfv classcoe1imjk
17 5 9 8 8 16 cmpo classidomdomm,jdomdommcoe1imjk
18 1 3 2 4 17 cmpo classmV,k0idomdomm,jdomdommcoe1imjk
19 0 18 wceq wffdecompPMat=mV,k0idomdomm,jdomdommcoe1imjk