Metamath Proof Explorer


Definition df-decpmat

Description: Define the decomposition of polynomial matrices. This function collects the coefficients of a polynomial matrix m belong to the k th power of the polynomial variable for each entry of m . (Contributed by AV, 2-Dec-2019)

Ref Expression
Assertion df-decpmat
|- decompPMat = ( m e. _V , k e. NN0 |-> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdecpmat
 |-  decompPMat
1 vm
 |-  m
2 cvv
 |-  _V
3 vk
 |-  k
4 cn0
 |-  NN0
5 vi
 |-  i
6 1 cv
 |-  m
7 6 cdm
 |-  dom m
8 7 cdm
 |-  dom dom m
9 vj
 |-  j
10 cco1
 |-  coe1
11 5 cv
 |-  i
12 9 cv
 |-  j
13 11 12 6 co
 |-  ( i m j )
14 13 10 cfv
 |-  ( coe1 ` ( i m j ) )
15 3 cv
 |-  k
16 15 14 cfv
 |-  ( ( coe1 ` ( i m j ) ) ` k )
17 5 9 8 8 16 cmpo
 |-  ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) )
18 1 3 2 4 17 cmpo
 |-  ( m e. _V , k e. NN0 |-> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) )
19 0 18 wceq
 |-  decompPMat = ( m e. _V , k e. NN0 |-> ( i e. dom dom m , j e. dom dom m |-> ( ( coe1 ` ( i m j ) ) ` k ) ) )