| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdecpmat | ⊢  decompPMat | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vk | ⊢ 𝑘 | 
						
							| 4 |  | cn0 | ⊢ ℕ0 | 
						
							| 5 |  | vi | ⊢ 𝑖 | 
						
							| 6 | 1 | cv | ⊢ 𝑚 | 
						
							| 7 | 6 | cdm | ⊢ dom  𝑚 | 
						
							| 8 | 7 | cdm | ⊢ dom  dom  𝑚 | 
						
							| 9 |  | vj | ⊢ 𝑗 | 
						
							| 10 |  | cco1 | ⊢ coe1 | 
						
							| 11 | 5 | cv | ⊢ 𝑖 | 
						
							| 12 | 9 | cv | ⊢ 𝑗 | 
						
							| 13 | 11 12 6 | co | ⊢ ( 𝑖 𝑚 𝑗 ) | 
						
							| 14 | 13 10 | cfv | ⊢ ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) | 
						
							| 15 | 3 | cv | ⊢ 𝑘 | 
						
							| 16 | 15 14 | cfv | ⊢ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) | 
						
							| 17 | 5 9 8 8 16 | cmpo | ⊢ ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) | 
						
							| 18 | 1 3 2 4 17 | cmpo | ⊢ ( 𝑚  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 19 | 0 18 | wceq | ⊢  decompPMat   =  ( 𝑚  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |