| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-decpmat | ⊢  decompPMat   =  ( 𝑚  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →   decompPMat   =  ( 𝑚  ∈  V ,  𝑘  ∈  ℕ0  ↦  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 3 |  | dmeq | ⊢ ( 𝑚  =  𝑀  →  dom  𝑚  =  dom  𝑀 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  dom  𝑚  =  dom  𝑀 ) | 
						
							| 5 | 4 | dmeqd | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  dom  dom  𝑚  =  dom  dom  𝑀 ) | 
						
							| 6 |  | oveq | ⊢ ( 𝑚  =  𝑀  →  ( 𝑖 𝑚 𝑗 )  =  ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑚  =  𝑀  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  𝑘  =  𝐾 ) | 
						
							| 10 | 8 9 | fveq12d | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) | 
						
							| 11 | 5 5 10 | mpoeq123dv | ⊢ ( ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 )  →  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑚  =  𝑀  ∧  𝑘  =  𝐾 ) )  →  ( 𝑖  ∈  dom  dom  𝑚 ,  𝑗  ∈  dom  dom  𝑚  ↦  ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 13 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  𝑀  ∈  V ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 16 |  | dmexg | ⊢ ( 𝑀  ∈  𝑉  →  dom  𝑀  ∈  V ) | 
						
							| 17 | 16 | dmexd | ⊢ ( 𝑀  ∈  𝑉  →  dom  dom  𝑀  ∈  V ) | 
						
							| 18 | 17 17 | jca | ⊢ ( 𝑀  ∈  𝑉  →  ( dom  dom  𝑀  ∈  V  ∧  dom  dom  𝑀  ∈  V ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( dom  dom  𝑀  ∈  V  ∧  dom  dom  𝑀  ∈  V ) ) | 
						
							| 20 |  | mpoexga | ⊢ ( ( dom  dom  𝑀  ∈  V  ∧  dom  dom  𝑀  ∈  V )  →  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) )  ∈  V ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) )  ∈  V ) | 
						
							| 22 | 2 12 14 15 21 | ovmpod | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |