| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | decpmatval.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | decpmatval0 | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 | 1 4 2 | matbas2i | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 6 |  | elmapi | ⊢ ( 𝑀  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  →  𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 7 |  | fdm | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑅 )  →  dom  𝑀  =  ( 𝑁  ×  𝑁 ) ) | 
						
							| 8 | 7 | dmeqd | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑅 )  →  dom  dom  𝑀  =  dom  ( 𝑁  ×  𝑁 ) ) | 
						
							| 9 |  | dmxpid | ⊢ dom  ( 𝑁  ×  𝑁 )  =  𝑁 | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝑀 : ( 𝑁  ×  𝑁 ) ⟶ ( Base ‘ 𝑅 )  →  dom  dom  𝑀  =  𝑁 ) | 
						
							| 11 | 5 6 10 | 3syl | ⊢ ( 𝑀  ∈  𝐵  →  dom  dom  𝑀  =  𝑁 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  dom  dom  𝑀  =  𝑁 ) | 
						
							| 13 |  | eqidd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) | 
						
							| 14 | 12 12 13 | mpoeq123dv | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  dom  dom  𝑀 ,  𝑗  ∈  dom  dom  𝑀  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 15 | 3 14 | eqtrd | ⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |